Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explores plant phenotypic plasticity belowground

28.07.2005


When we think of organisms actively searching for resources (foraging) we generally think of things like wolves stalking elk or butterflies finding flowers. Why don’t we also think about plants growing roots through the soil? Although they cannot run or fly, plants forage too, for soil nutrients by growing more roots in response to locally high nutrient levels.



One of the most widely accepted explanations of why plants differ in their ability to place roots selectively in patches is known as the "scale-precision tradeoff" theory. Underlying the theory is the idea that large, dominant plants forage over large distances ("foraging scale") but are unable to place their roots precisely ("foraging precision"), while small, subordinate plants are able to coexist with the dominants, in part, because they exhibit greater foraging precision.

In an article in the August 2005 issue of The American Naturalist, Steven Kembel and James Cahill test the validity of this foraging trade-off theory using a data set of more than 100 species, compiled from previously published studies. Consistent with other studies, they found that species vary greatly in the precision with which they forage, with grasses generally less precise foragers than broad-leafed plants. However, the ability to forage precisely in response to nutrient patches is completely unrelated to plant size. Surprisingly, most species grew bigger when soil resources were patchy instead of evenly distributed, regardless of whether they were precise foragers or not. This research opens up new avenues of inquiry about the ecological significance of plant foraging strategies.

Carrie Olivia Adams | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>