Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small worm yields big clue on muscle receptor action

27.07.2005


Researchers at the University of Illinois at Chicago have identified an elusive subunit of a neurotransmitter receptor found in both humans and the much-studied laboratory nematode C. elegans which may open new pathways of research on muscle function.



The neurotransmitter acetylcholine binds to two different nicotinic receptors at the nematode’s neuromuscular junctions, causing them to contract. Previously, researchers knew the subunit composition only of the levamisole-sensitive acetylcholine receptors. In the second, levamisole-insensitive acetylcholine receptors, a subunit called acetylcholine receptor 16, or ACR-16, has now been identified as necessary for this receptor’s contribution to muscle contraction.

Janet Richmond, assistant professor of biological sciences at UIC, along with graduate students Denis Touroutine and Anna Burdina, reported the findings in the July 22 issue of the Journal of Biological Chemistry. The research also drew on bioinformatic data provided by David Miller, associate professor of cell and developmental biology at Vanderbilt University, and work by his graduate students Rebecca Fox and Stephen Von Stetina.


Richmond has developed a preparation for cutting open the microscopic nematode to record muscle responses when acetylcholine is applied. Using this preparation, Richmond was still getting muscle contraction when acetylcholine was applied to worms lacking any of five receptor subunits known to be sensitive to levamisole, a chemical that poisons nematodes. Two additional receptor subunits -- ACR-16 and ACR-8 -- identified using Vanderbilt’s data, were found to be likely candidates for the remaining acetylcholine response. ACR-16 was singled out as the key subunit.

"We’ve shown the ACR-16-containing receptor is present in muscle and contributes hugely to the synaptic current," said Richmond.

"Now we can tag this receptor, see if it’s localized at the synapse and start to mutagenize animals to figure out what makes that receptor stay or make it to the synapse," she added.

Richmond said the finding might have direct relevance to humans because the ACR-16 receptor is very similar to the alpha-7 nicotinic receptor in the human brain.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?
26.05.2017 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>