Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small worm yields big clue on muscle receptor action

27.07.2005


Researchers at the University of Illinois at Chicago have identified an elusive subunit of a neurotransmitter receptor found in both humans and the much-studied laboratory nematode C. elegans which may open new pathways of research on muscle function.



The neurotransmitter acetylcholine binds to two different nicotinic receptors at the nematode’s neuromuscular junctions, causing them to contract. Previously, researchers knew the subunit composition only of the levamisole-sensitive acetylcholine receptors. In the second, levamisole-insensitive acetylcholine receptors, a subunit called acetylcholine receptor 16, or ACR-16, has now been identified as necessary for this receptor’s contribution to muscle contraction.

Janet Richmond, assistant professor of biological sciences at UIC, along with graduate students Denis Touroutine and Anna Burdina, reported the findings in the July 22 issue of the Journal of Biological Chemistry. The research also drew on bioinformatic data provided by David Miller, associate professor of cell and developmental biology at Vanderbilt University, and work by his graduate students Rebecca Fox and Stephen Von Stetina.


Richmond has developed a preparation for cutting open the microscopic nematode to record muscle responses when acetylcholine is applied. Using this preparation, Richmond was still getting muscle contraction when acetylcholine was applied to worms lacking any of five receptor subunits known to be sensitive to levamisole, a chemical that poisons nematodes. Two additional receptor subunits -- ACR-16 and ACR-8 -- identified using Vanderbilt’s data, were found to be likely candidates for the remaining acetylcholine response. ACR-16 was singled out as the key subunit.

"We’ve shown the ACR-16-containing receptor is present in muscle and contributes hugely to the synaptic current," said Richmond.

"Now we can tag this receptor, see if it’s localized at the synapse and start to mutagenize animals to figure out what makes that receptor stay or make it to the synapse," she added.

Richmond said the finding might have direct relevance to humans because the ACR-16 receptor is very similar to the alpha-7 nicotinic receptor in the human brain.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>