Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small worm yields big clue on muscle receptor action

27.07.2005


Researchers at the University of Illinois at Chicago have identified an elusive subunit of a neurotransmitter receptor found in both humans and the much-studied laboratory nematode C. elegans which may open new pathways of research on muscle function.



The neurotransmitter acetylcholine binds to two different nicotinic receptors at the nematode’s neuromuscular junctions, causing them to contract. Previously, researchers knew the subunit composition only of the levamisole-sensitive acetylcholine receptors. In the second, levamisole-insensitive acetylcholine receptors, a subunit called acetylcholine receptor 16, or ACR-16, has now been identified as necessary for this receptor’s contribution to muscle contraction.

Janet Richmond, assistant professor of biological sciences at UIC, along with graduate students Denis Touroutine and Anna Burdina, reported the findings in the July 22 issue of the Journal of Biological Chemistry. The research also drew on bioinformatic data provided by David Miller, associate professor of cell and developmental biology at Vanderbilt University, and work by his graduate students Rebecca Fox and Stephen Von Stetina.


Richmond has developed a preparation for cutting open the microscopic nematode to record muscle responses when acetylcholine is applied. Using this preparation, Richmond was still getting muscle contraction when acetylcholine was applied to worms lacking any of five receptor subunits known to be sensitive to levamisole, a chemical that poisons nematodes. Two additional receptor subunits -- ACR-16 and ACR-8 -- identified using Vanderbilt’s data, were found to be likely candidates for the remaining acetylcholine response. ACR-16 was singled out as the key subunit.

"We’ve shown the ACR-16-containing receptor is present in muscle and contributes hugely to the synaptic current," said Richmond.

"Now we can tag this receptor, see if it’s localized at the synapse and start to mutagenize animals to figure out what makes that receptor stay or make it to the synapse," she added.

Richmond said the finding might have direct relevance to humans because the ACR-16 receptor is very similar to the alpha-7 nicotinic receptor in the human brain.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>