Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small worm yields big clue on muscle receptor action

27.07.2005


Researchers at the University of Illinois at Chicago have identified an elusive subunit of a neurotransmitter receptor found in both humans and the much-studied laboratory nematode C. elegans which may open new pathways of research on muscle function.



The neurotransmitter acetylcholine binds to two different nicotinic receptors at the nematode’s neuromuscular junctions, causing them to contract. Previously, researchers knew the subunit composition only of the levamisole-sensitive acetylcholine receptors. In the second, levamisole-insensitive acetylcholine receptors, a subunit called acetylcholine receptor 16, or ACR-16, has now been identified as necessary for this receptor’s contribution to muscle contraction.

Janet Richmond, assistant professor of biological sciences at UIC, along with graduate students Denis Touroutine and Anna Burdina, reported the findings in the July 22 issue of the Journal of Biological Chemistry. The research also drew on bioinformatic data provided by David Miller, associate professor of cell and developmental biology at Vanderbilt University, and work by his graduate students Rebecca Fox and Stephen Von Stetina.


Richmond has developed a preparation for cutting open the microscopic nematode to record muscle responses when acetylcholine is applied. Using this preparation, Richmond was still getting muscle contraction when acetylcholine was applied to worms lacking any of five receptor subunits known to be sensitive to levamisole, a chemical that poisons nematodes. Two additional receptor subunits -- ACR-16 and ACR-8 -- identified using Vanderbilt’s data, were found to be likely candidates for the remaining acetylcholine response. ACR-16 was singled out as the key subunit.

"We’ve shown the ACR-16-containing receptor is present in muscle and contributes hugely to the synaptic current," said Richmond.

"Now we can tag this receptor, see if it’s localized at the synapse and start to mutagenize animals to figure out what makes that receptor stay or make it to the synapse," she added.

Richmond said the finding might have direct relevance to humans because the ACR-16 receptor is very similar to the alpha-7 nicotinic receptor in the human brain.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>