Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small worm yields big clue on muscle receptor action

27.07.2005


Researchers at the University of Illinois at Chicago have identified an elusive subunit of a neurotransmitter receptor found in both humans and the much-studied laboratory nematode C. elegans which may open new pathways of research on muscle function.



The neurotransmitter acetylcholine binds to two different nicotinic receptors at the nematode’s neuromuscular junctions, causing them to contract. Previously, researchers knew the subunit composition only of the levamisole-sensitive acetylcholine receptors. In the second, levamisole-insensitive acetylcholine receptors, a subunit called acetylcholine receptor 16, or ACR-16, has now been identified as necessary for this receptor’s contribution to muscle contraction.

Janet Richmond, assistant professor of biological sciences at UIC, along with graduate students Denis Touroutine and Anna Burdina, reported the findings in the July 22 issue of the Journal of Biological Chemistry. The research also drew on bioinformatic data provided by David Miller, associate professor of cell and developmental biology at Vanderbilt University, and work by his graduate students Rebecca Fox and Stephen Von Stetina.


Richmond has developed a preparation for cutting open the microscopic nematode to record muscle responses when acetylcholine is applied. Using this preparation, Richmond was still getting muscle contraction when acetylcholine was applied to worms lacking any of five receptor subunits known to be sensitive to levamisole, a chemical that poisons nematodes. Two additional receptor subunits -- ACR-16 and ACR-8 -- identified using Vanderbilt’s data, were found to be likely candidates for the remaining acetylcholine response. ACR-16 was singled out as the key subunit.

"We’ve shown the ACR-16-containing receptor is present in muscle and contributes hugely to the synaptic current," said Richmond.

"Now we can tag this receptor, see if it’s localized at the synapse and start to mutagenize animals to figure out what makes that receptor stay or make it to the synapse," she added.

Richmond said the finding might have direct relevance to humans because the ACR-16 receptor is very similar to the alpha-7 nicotinic receptor in the human brain.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>