Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chickadees can help humans get their bearings


How did University of Alberta researchers discover that animals zig when they were only supposed to zag? A little birdie told them.

In studying the spatial memory of wild-caught mountain chickadees, University of Alberta researchers were surprised to discover the birds contradicting prior research that showed how animals navigate. This study is the first to reveal a different pattern. Previously, only animals that had been raised in human-made enclosures had been tested.

The findings are published in the July issue of Biology Letters.

To get their bearings, humans and other animals are often guided by the geometrical shape of their environment. For example, humans have an easy time distinguishing the door located at the ends of a hallway from those located in the middle, but may confuse doors at the two ends, such as when they re-enter a hallway in a hotel. "This has been observed in every species tested, even when landmarks alone could be used, suggesting that animals are predisposed to go by geometry," said co-author Dr. Chris Sturdy, a professor of psychology and member of the Centre for Neuroscience at the University of Alberta.

The wild-caught chickadees differed from all previously tested animals by ignoring angular features of their environment and following landmarks instead. Although able to learn geometry when guiding themselves to food in lab experiments, the birds consistently ignored the concept when a prominent landmark, in this case a blue wall, was present.

"Getting oriented is an important part of solving many spatial navigational problems, such as locating your car in the parking lot at the end of a long day in the office. This discovery points to the fact that our early experiences influence how we solve such problems and could mean that by varying the environments that we encounter early in life, we could broaden and hone our spatial navigation abilities," said Dr. Sturdy and Dr. Marcia Spetch, who supervised the work conducted by graduate students Emily Gray and Laurie Bloomfield.

The findings also suggest the need for more research outside of lab environments, Dr. Sturdy said. "We have to look away from lab species and look at the diversity out there. There could be a lot of other species that have other ways of doing things."

Bev Betkowski | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>