Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Combination therapy leads to partial recovery from spinal cord injury in rats


Combining partially differentiated stem cells with gene therapy can promote the growth of new "insulation" around nerve fibers in the damaged spinal cords of rats, a new study shows. The treatment, which mimics the activity of two nerve growth factors, also improves the animals’ motor function and electrical conduction from the brain to the leg muscles. The finding may eventually lead to new ways of treating spinal cord injury in humans. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

The new study provides the best demonstration to date that producing a nerve-insulating substance called myelin can lead to functional improvements in animals with spinal cord injury. Previous studies have shown that the loss of myelin around nerve fibers contributes to the impaired function after a spinal cord injury. However, until now it has not been clear whether promoting new myelin growth in the spinal cord can reverse this damage, says Scott R. Whittemore, Ph.D., of the University of Louisville in Kentucky, who led the new study. "Many other investigators have suggested that remyelination is a possible approach to repair the spinal cord, but this is the first study to show unequivocally that it works," says Dr. Whittemore. "It is a proof of principle." Although the finding is promising, much work remains before such a technique could be used in humans. The study appears in the July 27, 2005, issue of the Journal of Neuroscience.[1]

In the study, the researchers took cells called special cells called glial-restricted precursors from the spinal cords of embryonic rats. These precursor cells develop from stem cells and are specialized so that they can form only two kinds of cells: astrocytes, which help support neurons and influence their activity, and oligodendrocytes, which produce myelin. The scientists used a modified virus to insert genes for marker proteins that make the cells visible. Some cells also received a gene called D15A. This gene produces a protein with activity similar to growth factors called neurotrophin 3 (NT3) and brain-derived neurotrophic factor (BDNF). Both NT3 and BDNF help myelin-producing cells (oligodendrocytes) develop and survive.

Dr. Whittemore and his colleagues injected the treated precursor cells into the spinal cords of rats with a type of spinal injury called a contusion, which is caused by an impact to the spinal cord. Other groups of spinal cord-injured rats received just precursor cells, D15A gene therapy, or other treatments that were used for comparison. The rats were evaluated weekly for 6 weeks after the treatment using a behavioral test called the Basso-Beattie-Bresnahan scale, which measures characteristics such as weight support, joint movements, and coordination. The researchers also used an electrical current test in which they put a magnetic stimulator on the skull and measured whether the resulting electrical current was transmitted to a muscle in one of the hind legs.

Most of the rats treated with the combination of precursor cells and gene therapy improved significantly on both tests, the researchers found. The combination therapy led to an improvement in the rats’ ability to walk and about a 10 percent improvement on the electrical current test. Rats that received the other treatments did not improve significantly, and untreated rats did not have any electrical activity that passed through the damaged spinal cord. Studies of the damaged spinal cord tissue after the combined treatment showed that many of the transplanted cells survived and migrated within the cord and that about 30 percent of them developed into myelin-producing oligodendrocytes.

"The key word here is ’combination.’ This is one of a series of new studies showing that a combination of therapies is needed for successful spinal repair, in this case, specialized cells and growth factors. The experiments also used a combination of outcomes -- physiology, behavior, and anatomy -- to point clearly at myelination as the cause for improved function," says Naomi Kleitman, Ph.D., the NINDS program director for the grants that funded this work. "The study also is a good example of strong collaboration between two spinal cord injury research centers, one at the University of Louisville and the other at the University of Miami in Florida."

The researchers are now investigating ways to improve this type of therapy with additional genetic modifications to the transplanted cells, and they plan to test similar techniques that start with undifferentiated embryonic stem (ES) cells instead of glial-restricted precursor cells. ES cells would be better for human studies than glial-restricted precursors because ES cells can be more readily obtained, Dr. Whittemore says.

[1]Cao Q, Xu X-M, DeVries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR. "Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells." Journal of Neuroscience, July 27, 2005, Vol. 25, No. 30, pp. 6947-6957.

Natalie Frazin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>