Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized immune-system B cells play double-barreled role

27.07.2005


A specialized subpopulation of the antibody-producing B cells of the immune system plays a "double-barreled" role in triggering both kinds of immunity -- innate and acquired, Duke University Medical Center immunologists have discovered. The division of labor between B-1a and B-1b cells they have uncovered offers basic insights that could contribute to more rational development of vaccines, they said.



B cells are the arms factories of the immune system, producing antibodies that target invading microbes for destruction. Generally, B-1 cells have been thought to play a major role in the innate immune response -- the type of immunity that offers rapid, generalized responses to infections. Less understood has been any role in adaptive immunity -- in which the immune system develops a long-term immune response to an invader after vaccination or infection.

The researchers -- Karen Haas, Jonathan Poe, Douglas Steeber and Thomas Tedder -- published their findings in the July 2005 issue of the journal Immunity. The research was sponsored by the National Institutes of Health, the Arthritis Foundation, the Lymphoma Research Foundation and the Leukemia & Lymphoma Society.


The researchers studied a particular type of B cell called the B-1 cell. In contrast to the more conventional B-2 cells, B-1 cells have different distinguishing characteristics such as behavior, anatomical localization and types of antibodies produced. In contrast to well-studied B-2 cells, the cellular origins of B-1 cells and their subtypes remain unknown.

"The true function of B-1 cells in the body has been highly controversial over the past two decades," said Tedder. "They appear to be a primary defense mechanism for innate immunity in infections. In particular, however, the B-1b cells have been largely ignored because they’re present in relatively small numbers and are difficult to work with."

In the studies, Haas and her colleagues used two genetically altered mouse strains -- one that overproduced and one that was deficient in a protein called CD19 that is a key regulator of B-1a cell function and development. Thus, the two mouse strains enabled the researchers to explore the consequences of too many or too few B-1a cells. Also, the strain lacking CD19, and therefore B-1a cells, enabled the researchers to isolate sufficient numbers of pure B-1b cells for study.

The researchers studied how the immune systems of the two mouse strains reacted to infection with Streptococcus pneumoniae, the bacterium that causes pneumonia. They found that the mice lacking B-1a cells were susceptible to infection, showing they lacked the natural antibodies of the innate immune system. Yet, these mice could be protected by immunization, which activated their adaptive long-term immune system.

By contrast, the mice with overproduction of CD19 and thus overproduction of B-1a cells did not achieve adaptive immunity as a result of vaccination.

Thus, the researchers concluded that the B-1a cells regulate the innate immune response and the B-1b cells regulate the adaptive, long-term immune response.

Said Haas, "This reciprocal contribution of these two subtypes of B-1 cells to innate and acquired immunity was surprising to us. No one knew much about what these subsets do.

Our results indicate that there is a tiered response system in which one kind of B-1 cell consistently provides a low level of protection, while the other specifically responds to an infection to help eliminate it."

According to Haas and Tedder, the findings offer potential insights into the mechanism of vaccine action. For example, the new insights into the roles of the two B-1 cell subtypes could help explain why the immune-triggering molecules called antigens from the pneumococcus bacteria do not elicit a strong adaptive immune response in infants, people with compromised immune systems and the elderly. Such people may not have developed sufficient populations of B-1b cells to mount such an adaptive response.

According to Tedder, such basic insights as the new study yielded could be important for rational design of vaccines.

"Most vaccines are designed simply empirically," he said. "The designers develop a formulation that’s a best guess and test it on patients or animal models to determine its effectiveness. But now, research is reaching a point where we can understand the signals that switch certain B cell populations on and off and regulate their function.

"We certainly cannot say whether these particular findings about the role of these B-1 cell subtypes will directly impact on vaccine development," said Tedder. "However, understanding such key characteristics of the immune regulatory process will be critical to learning to successfully manipulate it with vaccines."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>