Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specialized immune-system B cells play double-barreled role

27.07.2005


A specialized subpopulation of the antibody-producing B cells of the immune system plays a "double-barreled" role in triggering both kinds of immunity -- innate and acquired, Duke University Medical Center immunologists have discovered. The division of labor between B-1a and B-1b cells they have uncovered offers basic insights that could contribute to more rational development of vaccines, they said.



B cells are the arms factories of the immune system, producing antibodies that target invading microbes for destruction. Generally, B-1 cells have been thought to play a major role in the innate immune response -- the type of immunity that offers rapid, generalized responses to infections. Less understood has been any role in adaptive immunity -- in which the immune system develops a long-term immune response to an invader after vaccination or infection.

The researchers -- Karen Haas, Jonathan Poe, Douglas Steeber and Thomas Tedder -- published their findings in the July 2005 issue of the journal Immunity. The research was sponsored by the National Institutes of Health, the Arthritis Foundation, the Lymphoma Research Foundation and the Leukemia & Lymphoma Society.


The researchers studied a particular type of B cell called the B-1 cell. In contrast to the more conventional B-2 cells, B-1 cells have different distinguishing characteristics such as behavior, anatomical localization and types of antibodies produced. In contrast to well-studied B-2 cells, the cellular origins of B-1 cells and their subtypes remain unknown.

"The true function of B-1 cells in the body has been highly controversial over the past two decades," said Tedder. "They appear to be a primary defense mechanism for innate immunity in infections. In particular, however, the B-1b cells have been largely ignored because they’re present in relatively small numbers and are difficult to work with."

In the studies, Haas and her colleagues used two genetically altered mouse strains -- one that overproduced and one that was deficient in a protein called CD19 that is a key regulator of B-1a cell function and development. Thus, the two mouse strains enabled the researchers to explore the consequences of too many or too few B-1a cells. Also, the strain lacking CD19, and therefore B-1a cells, enabled the researchers to isolate sufficient numbers of pure B-1b cells for study.

The researchers studied how the immune systems of the two mouse strains reacted to infection with Streptococcus pneumoniae, the bacterium that causes pneumonia. They found that the mice lacking B-1a cells were susceptible to infection, showing they lacked the natural antibodies of the innate immune system. Yet, these mice could be protected by immunization, which activated their adaptive long-term immune system.

By contrast, the mice with overproduction of CD19 and thus overproduction of B-1a cells did not achieve adaptive immunity as a result of vaccination.

Thus, the researchers concluded that the B-1a cells regulate the innate immune response and the B-1b cells regulate the adaptive, long-term immune response.

Said Haas, "This reciprocal contribution of these two subtypes of B-1 cells to innate and acquired immunity was surprising to us. No one knew much about what these subsets do.

Our results indicate that there is a tiered response system in which one kind of B-1 cell consistently provides a low level of protection, while the other specifically responds to an infection to help eliminate it."

According to Haas and Tedder, the findings offer potential insights into the mechanism of vaccine action. For example, the new insights into the roles of the two B-1 cell subtypes could help explain why the immune-triggering molecules called antigens from the pneumococcus bacteria do not elicit a strong adaptive immune response in infants, people with compromised immune systems and the elderly. Such people may not have developed sufficient populations of B-1b cells to mount such an adaptive response.

According to Tedder, such basic insights as the new study yielded could be important for rational design of vaccines.

"Most vaccines are designed simply empirically," he said. "The designers develop a formulation that’s a best guess and test it on patients or animal models to determine its effectiveness. But now, research is reaching a point where we can understand the signals that switch certain B cell populations on and off and regulate their function.

"We certainly cannot say whether these particular findings about the role of these B-1 cell subtypes will directly impact on vaccine development," said Tedder. "However, understanding such key characteristics of the immune regulatory process will be critical to learning to successfully manipulate it with vaccines."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>