Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene found in 90 percent of breast cancers may be cancer vaccine target

26.07.2005


A gene that appears to help regulate normal embryonic development is found at high levels in virtually all forms of breast cancer, according to a new study led by Laszlo Radvanyi, Ph.D., associate professor of breast and melanoma medical oncology at The University of Texas M. D. Anderson Cancer Center.



The finding, published in the Aug. 2, 2005, issue of the Proceedings of the National Academy of Sciences and available on-line July 25, shows that the gene, normally made in small amounts in normal breast tissue, somehow becomes over-expressed in breast cancer cells. Researchers hope to use the cancer-specific protein to train the immune system to specifically attack breast cancer cells.

"There is a tremendous need for new molecular targets to treat breast cancer," Radvanyi says. "There are very few bona fide targets that are exquisitely specific for breast cancer. We believe this is one of them."


Radvanyi and his collaborators at Sanofi Pasteur, Toronto, Canada, zeroed in on the gene, called TRPS-1, after an exhaustive search for targets that are found at higher levels in breast cancer than in normal tissue. The researchers compared the gene levels of more than 50,000 known genes in 54 breast cancer specimens and 289 normal samples representing 75 tissues or organs. The breast cancer specimens included 10 examples of early breast cancer or ductal carcinoma in situ (DCIS), 38 locally invasive breast cancers and six representing metastatic disease. They narrowed down their search by eliminating genes commonly found in normal tissue and those predicted to encode proteins that are excreted from the cell.

"We were interested in identifying proteins that could be potential tumor antigens activating cytotoxic T-cells or tumor killer cells," Radvanyi says. "We wanted proteins that would make good targets for a cancer vaccine."

Finally, they zeroed in on TRPS-1, a gene they found at high levels in all forms of breast cancer, from DCIS to invasive disease, but in none of the normal tissues tested, except for low levels found in normal breast tissue.

The TRPS-1 gene turned out to be associated with a rare, inherited genetic disease in which loss of the gene function results in muscle and bone deformities. The gene is located on human chromosome 8 in a region previously known to be associated with breast cancer and other oncogenes. The scientists don’t yet know what the TRPS-1 protein is doing during the development of breast cancer, but they have started gathering clues to its role. Scientists at other institutions have shown TRPS-1 is a DNA-binding protein that regulates how other proteins get produced. It also appears to be involved in recognition of steroids such as estrogen. Radvanyi speculates that the protein may help regulate cell growth and perhaps estrogen recognition.

"Based on our findings, we believe that TRPS-1 is involved in the earliest stages of breast cancer," he says.

The success of the breast cancer drug Herceptin, an antibody that specifically attacks breast cancer cells in which the Her2/neu gene is active, has made immunotherapy an attractive option for treating breast cancer. However, only about one-third of breast cancer patients are candidates for Herceptin treatment. Radvanyi’s technique does not use antibodies, but instead attempts to get powerful immune system cells called T-cells to attack the cancer cells.

Once they had identified TRPS-1, the researchers wanted to test its ability to act as an antigen, a protein that could prime the immune system to attack breast cancer cells. They used portions of the TRPS-1 protein as antigens to train human T-cells to attack cells containing TRPS-1. T-cells are white blood cells of the immune system that recognize and destroy bacteria, viruses and other foreign tissue. The scientists showed T-cells trained to detect TRPS-1 would attack and kill breast cancer cells containing the protein in laboratory experiments.

"This is exciting because TRPS-1 appears to be over-expressed only in cancers and not in normal tissue," Radvanyi says. "This makes it much less likely that normal tissue would be attacked in an immunotherapy setting."

The researchers’ next steps will be to test more patient samples at M. D. Anderson and try to correlate levels of TRPS-1 to other known breast cancer markers, such as HER2/neu and the estrogen receptor. They also want to understand what the protein’s targets are inside the cell.

"If we understand its targets, we might be able to design inhibitors that disrupt its action, which could be clinically important given its early appearance in breast cancer," Radvanyi says.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>