Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cell therapy successfully treats heart attack in animals


Two patients enrolled in Phase I clinical trials at Hopkins

Final results of a study conducted at Johns Hopkins show that stem cell therapy can be used effectively to treat heart attacks, or myocardial infarction, in pigs. In just two months, stem cells harvested from another pig’s bone marrow and injected into the animal’s damaged heart restored heart function and repaired damaged heart muscle by 50 percent to 75 percent.

The Hopkins findings, first presented last fall at the 2004 Scientific Sessions of the American Heart Association, are to be published in the latest issue of the Proceedings of the National Academy of Sciences online the week of July 25.

Two patients have already been enrolled at Hopkins in a Phase I clinical trial, which is designed to test the safety of injecting adult stem cells at varying doses in patients who have recently suffered a heart attack. In total, 48 patients will participate in this study, which is happening at several sites across the country. Results are not expected until mid-2006.

"Ultimately, the goal is to develop a widely applicable treatment to repair and reverse the damage done to heart muscle that has been infarcted, or destroyed, after losing its blood supply," says cardiologist Joshua Hare, M.D., professor of medicine at The Johns Hopkins University School of Medicine and its Heart Institute, and senior author of the study and lead trial investigator.

"There is reason for optimism about these findings, possibly leading to a first-ever cure for heart attack in humans," he says. "If a treatment can be found for the damage done by a heart attack to heart muscle, then there is the potential to forestall the serious complications that traditionally result from a heart attack, including disturbances of heart rhythm that can lead to sudden cardiac death, and decreased muscle pumping function that can lead to congestive heart failure."

The researchers are using a special kind of stem cell in an early stage of development, called adult mesenchymal stem cells, to avoid potential problems with immunosuppression, in which every human’s immune system might attack stem cells from sources other than itself. Bone marrow adult stem cells do not have the same potential to develop into different organ tissues, as do embryonic stem cells, whose use is more controversial.

David March | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>