Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


To translate touch, the brain can quickly rearrange its sense of the body


The brain is bombarded by information about the physical proportions of our bodies. The most familiar sensations, such as a puff of wind or the brush of our own shirt sleeve, serve to constantly remind the brain of the body’s outer bounds, creating a sense of what is known as proprioception. In a new study, researchers report this week that the brain’s ability to interpret external signals and update its sense of bodily self is more dynamic than had been previously thought and that such updates can happen very quickly, altering within a matter of seconds how body parts and individual touch sensations are perceived.

The work is reported by researchers Frederique de Vignemont, Henrik Ehrsson, and Patrick Haggard at University College London.

The information that is integrated in the course of proprioception comes from several different senses, including touch, pain, vision, information from muscles, and so on. The brain must combine all these information inputs to accurately perceive the external world through our body’s interaction with it and also to produce a coherent sense of self. Because all these signals carry such different kinds of information, the brain must perform a constant juggling act in order to make sense of the body and the world.

In the new study, the research team used a method called tendon vibration to induce a distortion of healthy volunteers’ sense of their own bodies. When the biceps tendon of the right arm was vibrated, the subjects in the experiments felt within seconds that their right elbow was rotating away from the body, even though the arm was actually quite still. If subjects held their left index finger with their right hand while this happened, they felt their left index finger getting longer as they felt their arm move.

The team then tested how these bodily illusions rearranged the sense of touch. They touched subjects with two metal rods on the left index finger, and asked them to judge whether the distance between the rods was greater or smaller than the distance between two additional rods touched on the forehead. When tendon vibration made the index finger seem longer than it really was, subjects overestimated the tactile distance on the index finger, relative to the forehead. The sense of touch was altered within seconds of applying the vibration, suggesting a very strong and fast link between the brain systems for touch and body position.

The observations showed that abnormal input into one of the body’s sensory systems produced a rapid and profound change in another sensory system: The brain had changed the way it interpreted the signals from the sense of touch. These links between different bodily senses show that the brain constantly updates its internal map, and they shed light on the dynamic and flexible nature of the body map that is used to interpret each new perception.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>