Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling a stomach cancer puzzle

25.07.2005


From thousands of genes to a single compelling new target



It started several years ago with the observation that a large group of seemingly unconnected genes were behaving differently in patients with stomach cancer. Now a multi-national research team led by the Melbourne Branch of the Ludwig Institute for Cancer Research (LICR) has joined the proverbial dots and identified a potential new target for stomach cancer therapy, according to a paper published today in the prestigious Nature Medicine journal.

The paper’s first author, LICR’s Dr. Brendan Jenkins, says that this single study has made several substantial contributions to the understanding of Stat3, the protein linking those ’genes behaving badly’ and central to development, tissue equilibrium and the immune system. "We showed that, in mice, hyperactive Stat3 shuts down a vital controller of stomach cell growth, called TGF beta, and this allows cancer formation, and this mechanistic link is a world-first. Also, the gene differences identified in human stomach cancers are similar to those we would predict if the same thing, Stat3 hyperactivity shutting down TGF, happens in humans. So this is also the first time a connection between stomach cancer and this signaling pathway has been made."


Team leader Dr. Matthias Ernst, also from LICR, says that these basic research findings may one day impact directly on the treatment of stomach and other cancers. "We’ve demonstrated that by lowering Stat3 hyperactivity we can suppress stomach cancer formation, importantly without affecting Stat3’s other important roles in the body. Add to that the evidence suggesting that Stat3 is also involved in breast, head and neck, and prostate cancers, and we have a compelling case for investigating the development of therapies that target Stat3."

Sarah L. White, Ph.D. | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>