Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that three molecules may be developed into new Alzheimer’s drugs

25.07.2005


A team of scientists has discovered three molecules –– from a search of 58,000 compounds –– that appear to inhibit a key perpetrator of Alzheimer’s disease.

Each of the three molecules protects the protein called "tau," which becomes hopelessly tangled in the brains of patients with Alzheimer’s. The finding is promising news for the development of drugs for the disease.

Ken Kosik, co-director of the Neuroscience Research Institute at the University of California, Santa Barbara, headed the effort to find these molecules. The results of the study are published in the July issue of the journal Chemistry and Biology, released on Friday, July 22.



As baby boomers grow older, the incidence of Alzheimer’s, already increasing, will rise much more. "Our approaches to the disease are flagrantly inadequate," said Kosik. "There are a couple of FDA-approved drugs that help a little, but don’t modify the disease. They give a little bit of symptomatic relief, but don’t change the inexorable progression of the disease."

He said that new insights made over the past decade help to understand the molecular and genetic basis of the disease and these can now be built upon for the development of treatments. "There is no doubt that we need new approaches," said Kosik. "The insights gained about the mechanisms of the molecular and genetic basis of the disease are beginning to add up and can be harnessed for treatments."

Alzheimer’s involves a complicated, interwoven series of regulatory steps of genes and proteins "talking" to each other, he explained. "When the conversation goes awry the disease process begins. And it is not just one gene or one protein causing the damage."

The complexity of Alzheimer’s means that several different medications will likely be needed to control it, said Kosik. The same is true for many other diseases –– from AIDS to cancer. "It is likely that we will need to strategically target different aspects of the disease and put them together."

Kosik and his team chose to focus on the neurofibrillary tangles of neurons in the brain that, along with senile plaques, characterize Alzheimer’s disease. The tangles are made of "tau," a protein that is also present normally in the brain.

"Tau goes wrong and becomes pathological when it becomes intensely phosphorylated," said Kosik. "This means that many phosphate groups attach to tau--modify it--and cause it to become dysfunctional."

The culprit is an enzyme, called CDK5, that attaches the phosphate to the tau protein, facilitating the disease process. The researchers set out to find a way to inhibit this enzyme, to keep it from putting any phosphate on tau.

In the laboratory, they purified the enzyme and purified tau protein, and watched tau get phosphorylated by the enzyme. They then performed a library search of small molecules (58,000 of them) in an attempt to find those that would prevent phosphorylation. Small molecules are preferred because they are more easily used as a drug since they can get through the body and into cells. It is also important to find molecules that will cross the blood brain barrier.

They then set up a test of nearly 400 small molecules that fit their criteria. The test results showed three small molecules that can inhibit the enzyme. These are candidates for development as drugs.

Kosik explained that proteins are strings of amino acids folded into small globs. All proteins that happen to be an enzyme involved in phosphorylation have one thing in common. They have a pocket that is almost always in the same place and this is where the phosphate attaches to the enzyme, in this case CDK5. To get a molecule that specifically prevents the enzyme from binding at the pocket is difficult.

Of the three compounds that the research group found, the scientists were able to locate where they bind. They found that one binds in the pocket, another binds at the edge of the pocket, and a third appears to bind completely outside the pocket. The scientists are most interested in the second and third compounds.

"This is the first demonstration that we can find small molecules that can more specifically affect the phosphorylation of tau by CDK5," said Kosik.

In terms of future directions, Kosik said, "There is lots to do here, lab testing, testing in animals, etc. But we have made an important step forward toward developing treatments for this disease."

He noted that this work is of a type usually performed by pharmaceutical companies, but in this case was completed in an academic environment.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>