Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover that three molecules may be developed into new Alzheimer’s drugs


A team of scientists has discovered three molecules –– from a search of 58,000 compounds –– that appear to inhibit a key perpetrator of Alzheimer’s disease.

Each of the three molecules protects the protein called "tau," which becomes hopelessly tangled in the brains of patients with Alzheimer’s. The finding is promising news for the development of drugs for the disease.

Ken Kosik, co-director of the Neuroscience Research Institute at the University of California, Santa Barbara, headed the effort to find these molecules. The results of the study are published in the July issue of the journal Chemistry and Biology, released on Friday, July 22.

As baby boomers grow older, the incidence of Alzheimer’s, already increasing, will rise much more. "Our approaches to the disease are flagrantly inadequate," said Kosik. "There are a couple of FDA-approved drugs that help a little, but don’t modify the disease. They give a little bit of symptomatic relief, but don’t change the inexorable progression of the disease."

He said that new insights made over the past decade help to understand the molecular and genetic basis of the disease and these can now be built upon for the development of treatments. "There is no doubt that we need new approaches," said Kosik. "The insights gained about the mechanisms of the molecular and genetic basis of the disease are beginning to add up and can be harnessed for treatments."

Alzheimer’s involves a complicated, interwoven series of regulatory steps of genes and proteins "talking" to each other, he explained. "When the conversation goes awry the disease process begins. And it is not just one gene or one protein causing the damage."

The complexity of Alzheimer’s means that several different medications will likely be needed to control it, said Kosik. The same is true for many other diseases –– from AIDS to cancer. "It is likely that we will need to strategically target different aspects of the disease and put them together."

Kosik and his team chose to focus on the neurofibrillary tangles of neurons in the brain that, along with senile plaques, characterize Alzheimer’s disease. The tangles are made of "tau," a protein that is also present normally in the brain.

"Tau goes wrong and becomes pathological when it becomes intensely phosphorylated," said Kosik. "This means that many phosphate groups attach to tau--modify it--and cause it to become dysfunctional."

The culprit is an enzyme, called CDK5, that attaches the phosphate to the tau protein, facilitating the disease process. The researchers set out to find a way to inhibit this enzyme, to keep it from putting any phosphate on tau.

In the laboratory, they purified the enzyme and purified tau protein, and watched tau get phosphorylated by the enzyme. They then performed a library search of small molecules (58,000 of them) in an attempt to find those that would prevent phosphorylation. Small molecules are preferred because they are more easily used as a drug since they can get through the body and into cells. It is also important to find molecules that will cross the blood brain barrier.

They then set up a test of nearly 400 small molecules that fit their criteria. The test results showed three small molecules that can inhibit the enzyme. These are candidates for development as drugs.

Kosik explained that proteins are strings of amino acids folded into small globs. All proteins that happen to be an enzyme involved in phosphorylation have one thing in common. They have a pocket that is almost always in the same place and this is where the phosphate attaches to the enzyme, in this case CDK5. To get a molecule that specifically prevents the enzyme from binding at the pocket is difficult.

Of the three compounds that the research group found, the scientists were able to locate where they bind. They found that one binds in the pocket, another binds at the edge of the pocket, and a third appears to bind completely outside the pocket. The scientists are most interested in the second and third compounds.

"This is the first demonstration that we can find small molecules that can more specifically affect the phosphorylation of tau by CDK5," said Kosik.

In terms of future directions, Kosik said, "There is lots to do here, lab testing, testing in animals, etc. But we have made an important step forward toward developing treatments for this disease."

He noted that this work is of a type usually performed by pharmaceutical companies, but in this case was completed in an academic environment.

Gail Gallessich | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>