Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparative chromosome study finds breakage trends, cancer ties

22.07.2005


Breakages in chromosomes in mammalian evolution have occurred at preferred rather than random sites as long thought, and many of the sites are involved in human cancers, an international team of 25 scientists has discovered.



The researchers, reporting in the July 22 issue of the journal Science, also found that chromosomal evolution has accelerated, based on the rate of breakages and reorganization, since the extinction of dinosaurs 65 million years ago.

In a study led by Harris A. Lewin of the University of Illinois at Urbana-Champaign and William J. Murphy of Texas A&M University, the organization of chromosomes of humans, mice, rats, cows, pigs, dogs, cats and horses was compared at high resolution.


"This study has revealed many hidden secrets on the nature and timing of genome evolution in mammals, and it demonstrates how the study of basic evolutionary processes can lead to new insights into the origin of human diseases," said Lewin, the director of the Institute for Genomic Biology at Illinois and a professor of animal sciences.

The multi-species comparison was aided by a computer visualization tool -- the "Evolution Highway" -- developed by collaborators in the Automated Learning Group at the National Center for Supercomputing Applications at Illinois. Other lead participants were from the University of California at San Diego and the Genome Institute of Singapore.

The acceleration of evolution since dinosaurs disappeared surprised the researchers, who studied a computer-generated reconstruction of genomes of long extinct mammals, including the ancestor of the majority of living placental mammals of 94 million years ago.

"Based on our findings of the mammalian rate speed-up, we postulate that early mammals, with conservative body plans, retained fairly conserved genomes, as evidenced in the striking similarities in the reconstructed ancestral genomes," Murphy said.

"The widespread origin and diversification of most mammalian orders after the K-T extinction, due to exploitation of new ecological niches, may have facilitated isolation and opportunities for the fixation of karyotypic differences," said Murphy, a professor of veterinary integrative biosciences.

The K-T extinction occurred 65 million years ago as the Cretaceous Period closed and the Tertiary Period began. The Cretaceous-Tertiary Boundary, a defining moment marked throughout the world by a thin layer of iridium-rich clay between the rocks of the two periods, is believed to have resulted from a massive comet or asteroid strike.

The study’s data, Murphy added, provide a potential link between post-K-T isolation and the accelerated development of species-specific chromosomes. Since the K-T extinction, rates of chromosomal evolution among the species have increased from two-to-five fold, the researchers reported.

Rates of changes were obtained by analyzing the placements of breakpoints in the genomes of the species studied. A breakpoint is where one chromosome has split and the DNA is rearranged by the insertion of a piece from another chromosome or a different part of the same chromosome.

Breakpoints have been implicated as potentially major triggers for cancers and many other human diseases. "We looked closely at these breakpoints, asking if there are specific DNA signatures in these regions," Lewin said. "The answer is, we still don’t know, but in the human there is a high frequency of segmental duplication around the sites of breakage. We are interested in characterizing the genes and their functions in these regions."

The multi-species comparison showed significant overlapping with breakpoints that occur in a variety of human cancers, Lewin said. "While more work needs to be done to clarify this relationship, it is clear that the overlap is real, and that there is likely to be biological significance to this discovery."

The researchers theorize that chromosome rearrangements that result in the activation of cancer-causing genes are related to the propensity of chromosomes to break and form new combinations as new mammalian species evolve.

In all, 1,159 pair-wise breakpoints were found among the genomes of human and six non-primate species. Using a bioinformatics tool, researchers aligned and compared the breakpoints across species and constructed an evolutionary scenario for chromosomal rearrangements among all genomes and ancestors. They found 492 evolutionary-specific breakpoints and analyzed them for segmental duplication; 40 breakpoints were considered to be primate specific.

"Understanding the features of the DNA sequence in and around the evolutionary breakpoint regions is of key importance in determining why chromosomes break in specific regions," said Denis Larkin, a visiting animal scientist at Illinois and a principal author.

The researchers found that chromosomes tend to break in the same places as species evolve. Evidence for such a pattern had been suggested previously by Larkin and Lewin and by study co-authors both of the University of California at San Diego. However, the new study is the first to show the phenomenon on a genome-wide basis by multi-species comparison.

"Finding rearrangement hotspots in mammalian genomes is a paradigm shift in the study of chromosome evolution," said Pevzner, a professor of computer science at the University of California at San Diego. The next important questions, he added, involve what it is that makes some regions fragile and how fragility in an evolutionary context is related to fragility in cancer. The regions immediately flanking breakpoints, they discovered, have more genes than the rest of the genome on average.

"One of the most gene dense regions of the human genome," the authors wrote, "is characterized by recurrent breaks in different mammalian lineages (dog, cat, cattle, rodents), marked by large amounts of gene turnover and variation in centromere placement." (Centromere refers to highly condensed and constricted regions of chromosomes, where spindle fiber is attached during mitosis.)

Scientists at several other institutions contributed key genome-mapping information to the project.

Mapping data for the dog genome was provided by scientists at the U.S. National Human Genome Research Institute and French National Center for Scientific Research (CNRS). Cat-mapping data was contributed by the U.S. National Cancer Institute.

Scientists at Illinois, Texas A&M University and the National Institute for Agricultural Research in France provided genome maps of cattle, horses and pigs. The genome maps of humans, mice and rats were available from public sources.

"None of this would have been possible without the strategic investments by the National Institutes of Health and by the U.S. Department of Agriculture in the genome projects of humans, model and agriculturally important organisms," Lewin said. "It’s a perfect example of the unity of biology when studied at the level of DNA. Many more surprises await us as we relate genomes to biology, and these surprises will lead to better understanding of how species evolve and what peculiarities in their genomes cause one species to have a high rate of cancer and others not."

Jim Barlow, | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>