Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Impaired clearance of amyloid-beta causes vascular damage in Alzheimer’s disease


New research suggests that accumulation of amyloid-â peptides in cerebral blood vessels, as opposed to the brain itself, may be a more important pathological mediator of Alzheimer’s disease. Two independent yet related articles describe such findings in the August issue of The American Journal of Pathology. Both articles are highlighted on the Journal’s cover.

Alzheimer’s disease, the most common form of progressive dementia, affects an estimated 4.5 million Americans according to the Alzheimer’s Association. Amyloid-â (Aâ) deposition is a hallmark of Alzheimer’s disease and other cerebral amyloid angiopathies. However, exactly how Aâ accumulates and causes damage is not fully understood.

In the first article, "Cerebral microvascular Aâ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AâPP," Miao et al. describe early-onset Aâ deposition in Tg-SwDI mice. These mice express Aâ protein with mutations that are found in human early-onset cerebral amyloid angiopathy, causing specific accumulation of Aâ in cerebral blood vessels.

The Aâ peptides accumulated because they could not adequately cross the blood-brain barrier to be cleared from the brain. Over time, Aâ accumulation increased in the cerebral microvessels of the thalamus and subiculum of the brain. This resulted in degeneration of blood vessels as evidenced by reduced vessel density and increased apoptosis. Neuroinflammation also occurred as large numbers of microglia, along with inflammatory cytokines, were found at sites of Aâ accumulation.

The authors conclude that early-onset Aâ accumulation occurs predominantly in the cerebral microvasculature and appears largely responsible for the neuroinflammation in these mice. They also demonstrate the utility of Tg-SwDI mice in studying cerebral amyloid angiopathies, such as Alzheimer’s disease.

The second article, by Kumar-Singh et al., "Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls," utilizes two different transgenic mice: Tg2576 and PSAPP. Both models produce dense-core plaques, highly concentrated deposits of Aâ, and were used to investigate the possible association of blood vessels with Aâ deposits.

In these mice, dense-core plaques associated with cerebral vessels with high specificity. There was also evidence of vessel damage and blood-brain barrier damage, resulting in release of Aâ through the vessel walls and accumulation of plaques next to the vessels. These data confirm previous observations in humans that senile plaques associate with blood vessels, especially in the vasculotropic Flemish type of Alzheimer’s disease.

The authors propose a model of dense-core plaque formation that is dependent on cerebral vessels. As Aâ is cleared from the brain, it exerts a cytotoxic effect on the endothelial cells of the vascular wall (a process that may be exacerbated if clearance is impaired). This leads to loss of vessel integrity and accumulation of Aâ in the area surrounding the compromised vessel wall. Eventually, the damage is so great that the blood vessel deteriorates beyond functional use and new vessels form to pick up the slack. The result is a multicentric dense-core plaque that associates with multiple vessels.

These studies describe several animal models for further examining the pathogenesis and treatment of Alzheimer’s disease and related cerebral amyloid angiopathies. And both studies confirm that Aâ generated by neurons accumulates in blood vessels following attempted clearance of excess Aâ peptides. Thus, study of novel therapies that reduce the blood vessel-associated deposition of Aâ may prove beneficial to patients with Alzheimer’s disease.

Audra Cox | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>