Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Redesigned protein accelerates blood clotting

21.07.2005


Study holds hope for next generation hemophilia treatment



Researchers have doubled the potency of a protein that drives blood to clot, according to research to be published in the July 26 edition of Biochemistry. The study results may have profound implications for the treatment of hemophilia, the inherited blood disorder that causes easy or excessive bleeding in 30,000 Americans.

In most cases, hemophilia is caused by a lack of factor VIII, one of several proteins that enable blood to solidify, or clot, to plug wounds after injury. Current preventive treatment consists of genetically engineered factor VIII administered by injection, but one quarter of those born with no factor VIII suffer severe immune reactions that render the treatment inactive. In addition, current treatment costs as much as $200,000 per patient per year. Researchers at the University of Rochester Medical Center have been studying the structure of factor VIII for 20 years, and are making subtle changes in the protein with the goal of offering more effective, less burdensome treatment.


"We set out to design a version of factor VIII that would improve on the naturally-occurring form of the protein," said Philip Fay, Ph.D., professor in the Department of Biochemistry and Biophysics at the University of Rochester Medical Center, and the study’s senior author. "A more potent form of factor VIII, one that could treat effectively with a lower dose, would reduce the cost and, potentially, avert immune reactions," Fay said.

Study Details

Blood clotting involves more than a dozen clotting factors, many named with roman numerals. They form a cascade of chemical reactions inside blood vessels following injury, with each factor, or complex of factors, activating the next in the chain. Factor VIII partners with factor IX to activate factor X, which creates a burst of thrombin, which in turn generates fibrin, the sticky protein strands that form a web-like clot over damaged tissue. Calcium, a metallic element, must be present for factor VIII to work. Factor VIII has on its surface pocket-like chains of amino acids shaped to hold calcium ions (calcium binding sites). When calcium bonds to it, factor VIII changes shape and becomes better able to bind factor IX.

In past research, Fay’s team had identified a single amino acid (out of the more than 2,300 building blocks making up factor VIII) with the potential, if replaced, to change the performance of entire protein. Researchers proved the theory in the current study by swapping out a glutamic acid naturally occurring at a specific point in a calcium binding site on factor VIII with 19 different amino acids. One of the replacements, alanine, doubled the ability of factor VIII to bind with factor IX. Results were measured by introducing each form of factor VIII into hemophilic blood plasma and recording the time it took to cause clotting.

Fay, along with Hironao Wakabayashi, M.D., a research assistant professor at the University of Rochester Medical Center and co-inventor, have filed a patent application for the factor VIII redesign used in the published study. Moving forward, Fay’s team will target additional calcium binding sites with the goal of making changes that further increase factor VIII potency.

"Our goal is to improve upon nature by developing gain-of-function factor VIII proteins that are superior to the factor VIII protein found in healthy individuals," Fay said. "These more potent forms are not likely to occur naturally since they would theoretically result in excessive clotting, blocked arteries and heart attacks in otherwise healthy people. In patients with hemophilia, however, enhanced clotting is desirable."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>