Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers create optoelectronic tweezers to round up cells, microparticles

21.07.2005


Rounding up wayward cells and particles on a microscope slide can be as difficult as corralling wild horses on the range, particularly if there’s a need to separate a single individual from the group.


The images above show selective collection of live cells from a mixture of live and dead cells. In (a), the cells are randomly positioned. In (b) and (c), a series of optically projected concentric circles round up live cells, while dead cells (stained with Trypan blue dye) leak out through the dark gaps and are not collected. The optical pattern has a yellowish colour, while weak background scattered light results in a pinkish hue in the non-patterned areas. Section (d) shows the collection of live cells rounded up by the optoelectronic tweezer. (Courtesy of Wu Lab, UC Berkeley)


Shown is a schematic of the optoelectronic tweezer developed by UC Berkeley engineers. Liquid that contains microscopic particles is sandwiched between the top indium tin oxide (ITO) glass and the bottom photosensitive surface, made up of amorphous silicon (a-Si:H) and silicon nitride. The illumination source is a light-emitting diode operating at a wavelength of 625 nm. The optical images shown on the digital micromirror display (DMD) are focused onto the photosensitive surface and create the non-uniform electric field for manipulation of the particles. (Courtesy of Wu Lab, UC Berkeley)



But now, a new device developed by University of California, Berkeley, engineers, and dubbed an "optoelectronic tweezer," will enable researchers to easily manipulate large numbers of single cells and particles using optical images projected onto a glass slide coated with photoconductive materials.

"This is the first time a single light-emitting diode has been used to trap more than 10,000 microparticles at the same time," said Ming Wu, UC Berkeley professor of electrical engineering and computer sciences and principal investigator of the study. "Optoelectronic tweezers can produce instant microfluidic circuits without the need for sophisticated microfabrication techniques."


This technique, reported in the July 21 issue of the journal Nature, has an advantage over existing methods of manipulating cells, such as optical tweezers that use focused laser beams to "trap" small molecules. Such techniques require high-powered lasers, and their tight focusing requirements fundamentally limit the number of cells that can be moved at the same time.

Wu and his UC Berkeley graduate students, Pei Yu Chiou and Aaron Ohta, also improved upon other cell manipulation tools that use electrokinetic forces to create electric fields that either repel or attract particles in order to move them. Dielectrophoresis, for instance, can move larger numbers of particles. However, it lacks the resolution and flexibility of optical tweezers.

The UC Berkeley engineers found a way to get the best of both worlds by transforming optical energy to electrical energy through the use of a photoconductive surface. The idea is similar to that used in the ubiquitous office copier machine. In xerography, a document is scanned and transferred onto a photosensitive drum, which attracts dyes of carbon particles that are rolled onto a piece of paper to reproduce the image.

In this case, the researchers use a photosensitive surface made of amorphous silicon, a common material used in solar cells and flat-panel displays. Microscopic polystyrene particles suspended in a liquid were sandwiched between a piece of glass and the photoconductive material. Wherever light would hit the photosensitive material, it would behave like a conducting electrode, while areas not exposed to light would behave like a non-conducting insulator. Once a light source is removed, the photosensitive material returns to normal.

Depending upon the properties of the particles or cells being studied, they will either be attracted to or repelled by the electric field generated by the optoelectronic tweezer. Either way, the researchers can use that behavior to scoot particles where they want them to go.

There are many reasons why researchers would want the ability to easily manipulate cells. Biologists may want to isolate and study the fetal cells that can be found in a mother’s blood sample, for instance, or sort out abnormally shaped organisms from healthy ones.

"This sorting process is now painstakingly done by hand," said Wu, who is also co-director of the Berkeley Sensor and Actuator Center. "A technician finds the cell of interest under a microscope and literally cuts out the piece of glass where the cell is located, taking care not to harm the sample."

"Our design has a strong practical advantage in that, unlike optical tweezers, a simple light source, such as a light-emitting diode or halogen lamp, is powerful enough," said Chiou, a Ph.D. student in electrical engineering and computer sciences and lead author of the paper. "That is about 100,000 times less intense than the power required for optical tweezers."

Moreover, since the optoelectronic tweezers generate patterns through projected light, an almost limitless range of patterns are possible. Interested in boxing up individual particles in a grid-like pattern? No problem. Perhaps a star pattern would be more interesting. And there’s no reason why the light needs to be static, so the researchers have even created moving conveyor belts to show how large particles can be automatically sorted from smaller ones.

"We can almost change these patterns on the fly," said Ohta, also a Ph.D. student in electrical engineering and computer sciences. "For other manipulation tools, changing these electrode patterns meant fabricating a new chip. Now, we can just project a new image to generate any type of pattern we want."

The researchers also took advantage of the difference in electrical conductivity between living and dead cells. Living cells with intact membranes in a lower conductive medium are attracted to areas of exposed light. Using a series of ever shrinking concentric circles, the researchers were able to round up living human immune cells while leaving dead ones behind.

Chiou added that while researchers can use the optoelectronic tweezer to study a few single cells, they would also have the choice of manipulating roughly 10,000 cells or particles at the same time, giving statistical weight to their studies.

The researchers are now studying ways to combine this technology with computer pattern recognition so that the sorting process could be automated. "We could design the program to separate cells by size, luminescence, texture, fluorescent tags and basically any characteristic that can be distinguished visually," said Wu.

Part of Wu’s research was conducted while he was an electrical engineering professor at UC Los Angeles, and a co-principal investigator at NASA’s Institute for Cell Mimetic Space Exploration, headquartered at UCLA’s Henry Samueli School of Engineering and Applied Science.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>