Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clue to cocaine addicts’ quirky behavior

21.07.2005


Researchers working with rats have zeroed in on the brain circuitry mechanism whose disruption contributes to the impulsive behavior seen in users of cocaine as well as other psychostimulant drugs. The same circuitry has been implicated in such disorders as schizophrenia, depression, and post-traumatic stress disorder, wrote the researchers.

Yukiori Goto and Anthony A. Grace of the University of Pittsburgh described their findings in the July 21, 2005, issue of Neuron. In their studies, they sought to understand the effects of cocaine sensitization on the connections between two higher brain regions--the prefrontal cortex and the hippocampus--and the nucleus accumbens, which is the region in the limbic system involved in processing reward behavior. The prefrontal cortex is involved in processing information, and the hippocampus is involved in learning and memory.

The connections to the nucleus accumbens seem to be bidirectional, said the researchers, and the interactions with the prefrontal cortex and hippocampus could affect the "plasticity" of connections in the neurons of the nucleus accumbens. This means that disruptions to the normal connections could affect behavior.



The researchers’ electrophysiological studies of the effects of cocaine on this circuitry demonstrated that the drug did disrupt this normal plasticity. They found that the cocaine induced abnormal enhancement of neuronal connections--a phenomenon called long-term potentiation (LTP).

The researchers also performed behavioral studies on the cocaine-sensitized rats, to explore the behavioral effects of this disruption. In these studies, they placed the rats in a plus-shaped maze. The rats were taught that in response to a visual cue they should turn left or right toward one arm or the other of the maze to obtain a piece of cereal.

Goto and Grace found that, while the cocaine-sensitized rats learned the correct response strategy faster than normal rats, they were significantly less able to change strategies when they were required to ignore the cue and always make a left or right turn to receive the reward.

"Thus, although abnormally induced LTP by psychostimulants at limbic inputs might not interfere with learning a response strategy, it may reduce the capacity of these animals to consider alternate response strategies," concluded Goto and Grace. "In this way, the disruption of synaptic plasticity by cocaine sensitization may contribute to the affective- and context-inappropriate impulsive behaviors that are characteristic of drug addiction."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>