Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drawing with DNA: ’Bioart’ illuminates genomics


On any given day, tens of thousands of biologists around the globe run DNA sequences of unknown function through a lightning-fast online algorithm called BLAST – typically submitting 200 to 400 base pairs, or "letters" of genetic code, to be matched against the billions of letters for known genes. Searching for similarities that can shed light on functional or evolutionary relationships, scientists routinely use BLAST to churn through and produce vast amounts of data. Everyday applications include genetic medicine and pharmaceuticals. Yet this process and, more generally, genomics remain dimly understood by the public.

"Ecce Homology" custom software turns incomprehensibly long strings of genetic code into luminous, scientifically accurate visualizations that resemble calligraphy. Shown here, the DNA sequence which codes for human amylase, alpha 1A, salivary and its pictogram. Courtesy Ruth West

"Ecce Homology," an interactive "bioart" installation to be showcased at SIGGRAPH 2005 – in Los Angeles, July 31 through Aug. 4 – quite literally makes BLAST and genomics visible.

Headed up by new-media artist Ruth West – director of visual analytics and interactive technologies at the University of California, San Diego National Center for Microscopy and Imaging Research and research associate with the UCSD Center for Research and Computing in the Arts – the "Ecce Homology" project is an ongoing collaboration among 11 biologists, artists and computer scientists from UCSD, UCLA and the University of Southern California.

Named after Friedrich Nietzsche’s Ecce Homo, a meditation on how one becomes what one is, the project explores human evolution by examining similarities – a.k.a. "homology" – between genes from human beings and a target organism, in this case the rice plant.

"We are living in a time when we are generating enormous amounts of genetic data," said West, who trained as a microbiologist and began her career in medical genetics. "But data is not knowledge – it’s not even information. A key concept of ’Ecce Homology’ is to make an important subject like genomics accessible to the general public."

"Ecce Homology" uses a combination of dynamic media, computer vision and computer graphics to visualize genomic data.

Custom software turns genes – incomprehensibly long strings of As, Cs, Ts and Gs – into luminous pictograms that resemble Chinese or Sanskrit calligraphy. Based on currently available biophysical information, the pictograms are scientifically accurate representations of proteins encoded for by the genes.

In the SIGGRAPH installation, the representations are rendered in a 40-foot wide and 12-foot tall space by five video projectors, with the figures for human genes/proteins shown along a vertical axis and for the rice along a horizontal.

A whole-body computer vision interface tracks the movements of visitors and allows them to interact with the installation. By moving their bodies slowly within the space, visitors can draw shimmering light-filled traces. When a trace sufficiently matches a pictogram in the human dataset, it triggers a real-time bioinformatics comparison: BLAST begins to run, searching through the rice data for a homologue – conducting in a novel (and visible) way the same sequence analysis done by scientists. Results are presented as two superimposed pictograms.

"This high-dimensional visualization reduces the complexity of sequence codes to the sorts of shapes or patterns that a human being can make sense of," West said. "It is an artistic approach to extracting what’s important. And it is also an exploration of what art might have to offer for discovery in the sciences."

"Ecce Homology" premiered in 2003 at the UCLA Fowler Museum of Cultural History.

At SIGGRAPH 2005, "Ecce Homology" is being showcased as part of the international conference’s Art Gallery and its Emerging Technologies program. It will also be featured in the August 2005 issue of Leonardo, an art, science and technology journal from MIT Press.

Inga Kiderra | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>