Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drawing with DNA: ’Bioart’ illuminates genomics

21.07.2005


On any given day, tens of thousands of biologists around the globe run DNA sequences of unknown function through a lightning-fast online algorithm called BLAST – typically submitting 200 to 400 base pairs, or "letters" of genetic code, to be matched against the billions of letters for known genes. Searching for similarities that can shed light on functional or evolutionary relationships, scientists routinely use BLAST to churn through and produce vast amounts of data. Everyday applications include genetic medicine and pharmaceuticals. Yet this process and, more generally, genomics remain dimly understood by the public.


"Ecce Homology" custom software turns incomprehensibly long strings of genetic code into luminous, scientifically accurate visualizations that resemble calligraphy. Shown here, the DNA sequence which codes for human amylase, alpha 1A, salivary and its pictogram. Courtesy Ruth West



"Ecce Homology," an interactive "bioart" installation to be showcased at SIGGRAPH 2005 – in Los Angeles, July 31 through Aug. 4 – quite literally makes BLAST and genomics visible.

Headed up by new-media artist Ruth West – director of visual analytics and interactive technologies at the University of California, San Diego National Center for Microscopy and Imaging Research and research associate with the UCSD Center for Research and Computing in the Arts – the "Ecce Homology" project is an ongoing collaboration among 11 biologists, artists and computer scientists from UCSD, UCLA and the University of Southern California.


Named after Friedrich Nietzsche’s Ecce Homo, a meditation on how one becomes what one is, the project explores human evolution by examining similarities – a.k.a. "homology" – between genes from human beings and a target organism, in this case the rice plant.

"We are living in a time when we are generating enormous amounts of genetic data," said West, who trained as a microbiologist and began her career in medical genetics. "But data is not knowledge – it’s not even information. A key concept of ’Ecce Homology’ is to make an important subject like genomics accessible to the general public."

"Ecce Homology" uses a combination of dynamic media, computer vision and computer graphics to visualize genomic data.

Custom software turns genes – incomprehensibly long strings of As, Cs, Ts and Gs – into luminous pictograms that resemble Chinese or Sanskrit calligraphy. Based on currently available biophysical information, the pictograms are scientifically accurate representations of proteins encoded for by the genes.

In the SIGGRAPH installation, the representations are rendered in a 40-foot wide and 12-foot tall space by five video projectors, with the figures for human genes/proteins shown along a vertical axis and for the rice along a horizontal.

A whole-body computer vision interface tracks the movements of visitors and allows them to interact with the installation. By moving their bodies slowly within the space, visitors can draw shimmering light-filled traces. When a trace sufficiently matches a pictogram in the human dataset, it triggers a real-time bioinformatics comparison: BLAST begins to run, searching through the rice data for a homologue – conducting in a novel (and visible) way the same sequence analysis done by scientists. Results are presented as two superimposed pictograms.

"This high-dimensional visualization reduces the complexity of sequence codes to the sorts of shapes or patterns that a human being can make sense of," West said. "It is an artistic approach to extracting what’s important. And it is also an exploration of what art might have to offer for discovery in the sciences."

"Ecce Homology" premiered in 2003 at the UCLA Fowler Museum of Cultural History.

At SIGGRAPH 2005, "Ecce Homology" is being showcased as part of the international conference’s Art Gallery and its Emerging Technologies program. It will also be featured in the August 2005 issue of Leonardo, an art, science and technology journal from MIT Press.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.insilicov1.org/
http://www.siggraph.org/s2005/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>