Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drawing with DNA: ’Bioart’ illuminates genomics

21.07.2005


On any given day, tens of thousands of biologists around the globe run DNA sequences of unknown function through a lightning-fast online algorithm called BLAST – typically submitting 200 to 400 base pairs, or "letters" of genetic code, to be matched against the billions of letters for known genes. Searching for similarities that can shed light on functional or evolutionary relationships, scientists routinely use BLAST to churn through and produce vast amounts of data. Everyday applications include genetic medicine and pharmaceuticals. Yet this process and, more generally, genomics remain dimly understood by the public.


"Ecce Homology" custom software turns incomprehensibly long strings of genetic code into luminous, scientifically accurate visualizations that resemble calligraphy. Shown here, the DNA sequence which codes for human amylase, alpha 1A, salivary and its pictogram. Courtesy Ruth West



"Ecce Homology," an interactive "bioart" installation to be showcased at SIGGRAPH 2005 – in Los Angeles, July 31 through Aug. 4 – quite literally makes BLAST and genomics visible.

Headed up by new-media artist Ruth West – director of visual analytics and interactive technologies at the University of California, San Diego National Center for Microscopy and Imaging Research and research associate with the UCSD Center for Research and Computing in the Arts – the "Ecce Homology" project is an ongoing collaboration among 11 biologists, artists and computer scientists from UCSD, UCLA and the University of Southern California.


Named after Friedrich Nietzsche’s Ecce Homo, a meditation on how one becomes what one is, the project explores human evolution by examining similarities – a.k.a. "homology" – between genes from human beings and a target organism, in this case the rice plant.

"We are living in a time when we are generating enormous amounts of genetic data," said West, who trained as a microbiologist and began her career in medical genetics. "But data is not knowledge – it’s not even information. A key concept of ’Ecce Homology’ is to make an important subject like genomics accessible to the general public."

"Ecce Homology" uses a combination of dynamic media, computer vision and computer graphics to visualize genomic data.

Custom software turns genes – incomprehensibly long strings of As, Cs, Ts and Gs – into luminous pictograms that resemble Chinese or Sanskrit calligraphy. Based on currently available biophysical information, the pictograms are scientifically accurate representations of proteins encoded for by the genes.

In the SIGGRAPH installation, the representations are rendered in a 40-foot wide and 12-foot tall space by five video projectors, with the figures for human genes/proteins shown along a vertical axis and for the rice along a horizontal.

A whole-body computer vision interface tracks the movements of visitors and allows them to interact with the installation. By moving their bodies slowly within the space, visitors can draw shimmering light-filled traces. When a trace sufficiently matches a pictogram in the human dataset, it triggers a real-time bioinformatics comparison: BLAST begins to run, searching through the rice data for a homologue – conducting in a novel (and visible) way the same sequence analysis done by scientists. Results are presented as two superimposed pictograms.

"This high-dimensional visualization reduces the complexity of sequence codes to the sorts of shapes or patterns that a human being can make sense of," West said. "It is an artistic approach to extracting what’s important. And it is also an exploration of what art might have to offer for discovery in the sciences."

"Ecce Homology" premiered in 2003 at the UCLA Fowler Museum of Cultural History.

At SIGGRAPH 2005, "Ecce Homology" is being showcased as part of the international conference’s Art Gallery and its Emerging Technologies program. It will also be featured in the August 2005 issue of Leonardo, an art, science and technology journal from MIT Press.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.insilicov1.org/
http://www.siggraph.org/s2005/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>