Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin pulses keep the liver lean

20.07.2005


Insulin, a hormone long recognized as a generator of fat, also keeps fat in the liver under control, according to a new study in the July issue of Cell Metabolism. The newly discovered role for insulin may explain how an organ frequently flooded with the fat-building hormone normally stays trim and also suggests new dietary strategies and treatments to avoid fatty liver, a growing healthcare epidemic, said the researchers.



Insulin produced by the pancreas allows cells to take up glucose from the bloodstream and burn it for energy. In the liver, insulin promotes the synthesis and storage of lipids and carbohydrates and blocks their breakdown and release into the bloodstream. A failure to make or respond to insulin in people with diabetes causes blood sugar levels to rise.

The current study uncovered a new mechanism whereby acute insulin pulses limit fat synthesis in the liver. This protective mechanism fails in obese mice and mice with persistently high levels of insulin, the researchers also found.


The findings suggest that periods of fasting between meals play a critical role in maintaining a lean and healthy liver by allowing insulin levels to rise and fall, said study lead author Sonia Najjar of the Medical University of Ohio.

Furthermore, she said, the results emphasize the central role of the liver in metabolic control. A liver overwhelmed with insulin--as can occur in those who overeat--may become resistant to the hormone, leading to greater fat production and visceral weight gain. Resulting hikes in blood sugar and fat can also spell diabetes and heart disease, Najjar added.

"When we eat, the pancreas produces insulin, which stimulates the absorption of sugar and fat by the liver," Najjar said. "But in today’s Western society, large portions and frequent munching may lead insulin levels to remain high all the time. In that case, the liver no longer perceives pulses of the hormone and becomes resistant."

The researchers found that insulin pulses acutely reduce the activity of fat-building fatty acid synthase (FAS) in the liver by activating a second liver molecule, called CEACAM1. In mice lacking CEACAM1, insulin lost its ability to limit liver FAS activity. Obese mice and those with too much insulin also failed to exhibit a reduction in liver FAS activity following insulin delivery, suggesting that insulin’s effects depend on prior levels of the hormone, the researchers reported.

"The current data demonstrate that CEACAM1 is at the intersection of the pathways regulating insulin and fat metabolism in liver," Najjar said.

"Although mutations in CEACAM1 have not been found in patients with diabetes or insulin resistance, it is tempting to speculate that CEACAM1-dependent inhibition of fatty acid synthesis might be compromised as a consequence or even a cause of the insulin-resistant state," wrote Alan Saltiel of the University of Michigan in an accompanying preview. In this case, he added, finding ways to mimic the effects of CEACAM1 might help to alleviate chronically elevated blood and liver lipids in patients with diabetes.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>