Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research breakthrough offers new hope for liver cancer treatment

20.07.2005


Scientists at The University of Nottingham have announced an important biological breakthrough that could offer new hope in the fight against liver cancer.

Professor John Mayer and Dr Simon Dawson, in collaboration with colleagues at Japan’s Kyoto University, have discovered the function of a new liver oncoprotein — or cancer causing protein — which could be the first step to finding effective new treatments for the deadly illness.

The research, published today in the journal Cancer Cell, centres on the most common malignant liver cancers, hepatocellular carcinomas, which arise from the liver cells themselves. Primary liver cancer is relatively rare in the UK and other countries in the Western world, but is very common in Africa and Asia — it is strongly associated with hepatitis virus infection and with a natural toxin called aflatoxin which is present in mouldy peanuts, soybeans, groundnut, corn and rice. There is currently no cure for primary liver cancer and survival rates are low.



The latest work by the Nottingham team has shown that a natural process in the liver, which would normally lead to cells dying before they can become cancerous, is being disrupted by the oncoprotein gankyrin.

The research stems from an international collaboration that began five years ago — the Nottingham team joined forces with Professor Jun Fujita and colleagues at Kyoto University after learning that both had simultaneously discovered the same new gene, which they intuitively believed played a significant role in liver cancer. Together they set about identifying the function of the new gene.

The team has found that in most cases of liver-derived cancers the gene is overexpressed. It is this gene that produces gankyrin, which effectively stimulates the destruction of another vital protein in the liver called p53, which is essential in protecting the liver from cancer.

The process is part of the ubiquitin proteasome system (UPS) — the body’s natural method of breaking down proteins discovered by Aaron Ciechanover and Avram Hershko of the Israel Institute of Technology and Irwin Rose of the University of California, for which they were awarded the 2004 Nobel Prize for Chemistry.

The protein p53, sometimes called the ‘guardian of the genome’, is charged with the task of regulating cell division in the liver — it decides which cells should continue dividing and replicating their DNA and which should die. If a cell is infected with a virus, p53 sends out a signal to the cell, triggering a process called apoptosis — in which the cell effectively commits suicide.

In primary liver cancer, the team of scientists have discovered that this process is disrupted. Instead, the gankyrin binds to an enzyme called mdm2, which gives the p53 protein a molecular label which marks it for death. It is sent to the cell’s waste disposer, the proteasome, where it is broken down and destroyed. Damaged cells can then continue dividing and growing into a tumour.

The next step is to learn more about how and why this takes place, in the hope that eventually new therapies could be developed that will disrupt this biological process and halt the growth of tumours.

Professor John Mayer | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>