Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research breakthrough offers new hope for liver cancer treatment


Scientists at The University of Nottingham have announced an important biological breakthrough that could offer new hope in the fight against liver cancer.

Professor John Mayer and Dr Simon Dawson, in collaboration with colleagues at Japan’s Kyoto University, have discovered the function of a new liver oncoprotein — or cancer causing protein — which could be the first step to finding effective new treatments for the deadly illness.

The research, published today in the journal Cancer Cell, centres on the most common malignant liver cancers, hepatocellular carcinomas, which arise from the liver cells themselves. Primary liver cancer is relatively rare in the UK and other countries in the Western world, but is very common in Africa and Asia — it is strongly associated with hepatitis virus infection and with a natural toxin called aflatoxin which is present in mouldy peanuts, soybeans, groundnut, corn and rice. There is currently no cure for primary liver cancer and survival rates are low.

The latest work by the Nottingham team has shown that a natural process in the liver, which would normally lead to cells dying before they can become cancerous, is being disrupted by the oncoprotein gankyrin.

The research stems from an international collaboration that began five years ago — the Nottingham team joined forces with Professor Jun Fujita and colleagues at Kyoto University after learning that both had simultaneously discovered the same new gene, which they intuitively believed played a significant role in liver cancer. Together they set about identifying the function of the new gene.

The team has found that in most cases of liver-derived cancers the gene is overexpressed. It is this gene that produces gankyrin, which effectively stimulates the destruction of another vital protein in the liver called p53, which is essential in protecting the liver from cancer.

The process is part of the ubiquitin proteasome system (UPS) — the body’s natural method of breaking down proteins discovered by Aaron Ciechanover and Avram Hershko of the Israel Institute of Technology and Irwin Rose of the University of California, for which they were awarded the 2004 Nobel Prize for Chemistry.

The protein p53, sometimes called the ‘guardian of the genome’, is charged with the task of regulating cell division in the liver — it decides which cells should continue dividing and replicating their DNA and which should die. If a cell is infected with a virus, p53 sends out a signal to the cell, triggering a process called apoptosis — in which the cell effectively commits suicide.

In primary liver cancer, the team of scientists have discovered that this process is disrupted. Instead, the gankyrin binds to an enzyme called mdm2, which gives the p53 protein a molecular label which marks it for death. It is sent to the cell’s waste disposer, the proteasome, where it is broken down and destroyed. Damaged cells can then continue dividing and growing into a tumour.

The next step is to learn more about how and why this takes place, in the hope that eventually new therapies could be developed that will disrupt this biological process and halt the growth of tumours.

Professor John Mayer | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>