Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecule discovered in the battle between plants and disease

19.07.2005


Washington State University researcher’s findings could help crops fend off disease



Scientists at Washington State University in Pullman have discovered a molecule that plays a role in the battle plants must win against bacteria and fungi that would eat them for lunch. The group led by Professor Clarence A. "Bud" Ryan isolated a small protein called Pep1 that appears to act like a hormone, signaling to the rest of the plant to raise its defenses at the first sign of an infection. They also discovered the receptor protein to which Pep1 binds to exert its protective effects.

Pep1 was isolated from the plant Arabidopsis thaliana, which is a species favored by investigators for attributes that facilitate experimentation, but the same molecule is found in crop species such as canola, soybean, potato, tomato, rice, and poplar. Therefore, further work on Pep1 and its receptor could lead to a general increase in the resistance of crops to pathogens, which could greatly benefit farmers. Already, the researchers have used the Pep1 gene to increase the resistance of Arabidopsis plants to a fungal pathogen called Pythium irregulare.


These findings will be presented July 20, at 11:20 at the ASPB meeting at the Washington State Convention and Trade Center in Seattle, WA.

The abstract, #9183, is below:
Authors:
Presenter: Huffaker, Alisa
Authors: Huffaker, Alisa (A) alisamari@yahoo.com; Pearce, Gregory (A) pearceg@mail.wsu.edu; Ryan, Clarence, A (A) cabudryan@hotmail.com;

Affiliations: (A): Institute of Biological Chemistry, Washington State University

Title: A novel peptide signal, AtPep1, regulates pathogen defense in Arabidopsis

AtPep1 is a 23 amino acid peptide that was isolated from Arabidopsis thaliana (G. Pearce, A. Huffaker, C.A. Ryan, submitted). The peptide is encoded by a gene at the locus At5g64900 and is derived from the carboxyl terminus of a 92 amino acid precursor, proAtPep1, a scenario commonly found in both animal and plant peptide precursors. No physiological role was known for AtPep1, and a function was sought in Arabidopsis by incubating plants under a variety of conditions and monitoring expression of the proAtPep1 gene. Cold and dehydration stress and exposure to ABA or MeSA did not affect the expression of proAtPep1, but wounding, exposing plants to methyl jasmonate (MeJA), or supplying plants with the AtPep1 peptide through cut petioles induced expression of the gene. Also expressed in response to AtPep1 were the PDF1.2 gene (a plant defensin) and the PR-1 gene, (a pathogenesis-related gene). Two wound-related genes, LOX2 and VSP2, were not induced by AtPep1. Supplying AtPep1 to jasmonate-deficient fad3-2 fad7-2 fad8 mutant plants did not induce the proAtPep1, PDF1.2 or PR-1 genes, indicating that AtPep1 signaling involves the octadecanoid pathway. AtPep1 induction of defense genes in excised Arabidopsis leaves was inhibited by DPI, implicating the generation of H2O2 in the signaling pathway. Constitutively overexpressing the proAtPep1 gene in Arabidopsis induced a constitutive activation of PDF1.2, PR-1, and tyrosine amino transferase (TAT3) genes, but not the expression of LOX2 or VSP2 genes. The transgenic plants were more resistant toward the oomycete root pathogen Pythium irregulare than wild-type plants, evidenced by a more robust leaf and root growth upon infection. ProAtPep1 belongs to a seven member gene family in Arabidopsis with tissue-specific paralogs that exhibit differential expression profiles. Orthologs of the proAtPep1 gene have been identified in important crop species including canola, soybean, potato, tomato, rice and poplar.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>