Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecule discovered in the battle between plants and disease

19.07.2005


Washington State University researcher’s findings could help crops fend off disease



Scientists at Washington State University in Pullman have discovered a molecule that plays a role in the battle plants must win against bacteria and fungi that would eat them for lunch. The group led by Professor Clarence A. "Bud" Ryan isolated a small protein called Pep1 that appears to act like a hormone, signaling to the rest of the plant to raise its defenses at the first sign of an infection. They also discovered the receptor protein to which Pep1 binds to exert its protective effects.

Pep1 was isolated from the plant Arabidopsis thaliana, which is a species favored by investigators for attributes that facilitate experimentation, but the same molecule is found in crop species such as canola, soybean, potato, tomato, rice, and poplar. Therefore, further work on Pep1 and its receptor could lead to a general increase in the resistance of crops to pathogens, which could greatly benefit farmers. Already, the researchers have used the Pep1 gene to increase the resistance of Arabidopsis plants to a fungal pathogen called Pythium irregulare.


These findings will be presented July 20, at 11:20 at the ASPB meeting at the Washington State Convention and Trade Center in Seattle, WA.

The abstract, #9183, is below:
Authors:
Presenter: Huffaker, Alisa
Authors: Huffaker, Alisa (A) alisamari@yahoo.com; Pearce, Gregory (A) pearceg@mail.wsu.edu; Ryan, Clarence, A (A) cabudryan@hotmail.com;

Affiliations: (A): Institute of Biological Chemistry, Washington State University

Title: A novel peptide signal, AtPep1, regulates pathogen defense in Arabidopsis

AtPep1 is a 23 amino acid peptide that was isolated from Arabidopsis thaliana (G. Pearce, A. Huffaker, C.A. Ryan, submitted). The peptide is encoded by a gene at the locus At5g64900 and is derived from the carboxyl terminus of a 92 amino acid precursor, proAtPep1, a scenario commonly found in both animal and plant peptide precursors. No physiological role was known for AtPep1, and a function was sought in Arabidopsis by incubating plants under a variety of conditions and monitoring expression of the proAtPep1 gene. Cold and dehydration stress and exposure to ABA or MeSA did not affect the expression of proAtPep1, but wounding, exposing plants to methyl jasmonate (MeJA), or supplying plants with the AtPep1 peptide through cut petioles induced expression of the gene. Also expressed in response to AtPep1 were the PDF1.2 gene (a plant defensin) and the PR-1 gene, (a pathogenesis-related gene). Two wound-related genes, LOX2 and VSP2, were not induced by AtPep1. Supplying AtPep1 to jasmonate-deficient fad3-2 fad7-2 fad8 mutant plants did not induce the proAtPep1, PDF1.2 or PR-1 genes, indicating that AtPep1 signaling involves the octadecanoid pathway. AtPep1 induction of defense genes in excised Arabidopsis leaves was inhibited by DPI, implicating the generation of H2O2 in the signaling pathway. Constitutively overexpressing the proAtPep1 gene in Arabidopsis induced a constitutive activation of PDF1.2, PR-1, and tyrosine amino transferase (TAT3) genes, but not the expression of LOX2 or VSP2 genes. The transgenic plants were more resistant toward the oomycete root pathogen Pythium irregulare than wild-type plants, evidenced by a more robust leaf and root growth upon infection. ProAtPep1 belongs to a seven member gene family in Arabidopsis with tissue-specific paralogs that exhibit differential expression profiles. Orthologs of the proAtPep1 gene have been identified in important crop species including canola, soybean, potato, tomato, rice and poplar.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>