Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecule discovered in the battle between plants and disease

19.07.2005


Washington State University researcher’s findings could help crops fend off disease



Scientists at Washington State University in Pullman have discovered a molecule that plays a role in the battle plants must win against bacteria and fungi that would eat them for lunch. The group led by Professor Clarence A. "Bud" Ryan isolated a small protein called Pep1 that appears to act like a hormone, signaling to the rest of the plant to raise its defenses at the first sign of an infection. They also discovered the receptor protein to which Pep1 binds to exert its protective effects.

Pep1 was isolated from the plant Arabidopsis thaliana, which is a species favored by investigators for attributes that facilitate experimentation, but the same molecule is found in crop species such as canola, soybean, potato, tomato, rice, and poplar. Therefore, further work on Pep1 and its receptor could lead to a general increase in the resistance of crops to pathogens, which could greatly benefit farmers. Already, the researchers have used the Pep1 gene to increase the resistance of Arabidopsis plants to a fungal pathogen called Pythium irregulare.


These findings will be presented July 20, at 11:20 at the ASPB meeting at the Washington State Convention and Trade Center in Seattle, WA.

The abstract, #9183, is below:
Authors:
Presenter: Huffaker, Alisa
Authors: Huffaker, Alisa (A) alisamari@yahoo.com; Pearce, Gregory (A) pearceg@mail.wsu.edu; Ryan, Clarence, A (A) cabudryan@hotmail.com;

Affiliations: (A): Institute of Biological Chemistry, Washington State University

Title: A novel peptide signal, AtPep1, regulates pathogen defense in Arabidopsis

AtPep1 is a 23 amino acid peptide that was isolated from Arabidopsis thaliana (G. Pearce, A. Huffaker, C.A. Ryan, submitted). The peptide is encoded by a gene at the locus At5g64900 and is derived from the carboxyl terminus of a 92 amino acid precursor, proAtPep1, a scenario commonly found in both animal and plant peptide precursors. No physiological role was known for AtPep1, and a function was sought in Arabidopsis by incubating plants under a variety of conditions and monitoring expression of the proAtPep1 gene. Cold and dehydration stress and exposure to ABA or MeSA did not affect the expression of proAtPep1, but wounding, exposing plants to methyl jasmonate (MeJA), or supplying plants with the AtPep1 peptide through cut petioles induced expression of the gene. Also expressed in response to AtPep1 were the PDF1.2 gene (a plant defensin) and the PR-1 gene, (a pathogenesis-related gene). Two wound-related genes, LOX2 and VSP2, were not induced by AtPep1. Supplying AtPep1 to jasmonate-deficient fad3-2 fad7-2 fad8 mutant plants did not induce the proAtPep1, PDF1.2 or PR-1 genes, indicating that AtPep1 signaling involves the octadecanoid pathway. AtPep1 induction of defense genes in excised Arabidopsis leaves was inhibited by DPI, implicating the generation of H2O2 in the signaling pathway. Constitutively overexpressing the proAtPep1 gene in Arabidopsis induced a constitutive activation of PDF1.2, PR-1, and tyrosine amino transferase (TAT3) genes, but not the expression of LOX2 or VSP2 genes. The transgenic plants were more resistant toward the oomycete root pathogen Pythium irregulare than wild-type plants, evidenced by a more robust leaf and root growth upon infection. ProAtPep1 belongs to a seven member gene family in Arabidopsis with tissue-specific paralogs that exhibit differential expression profiles. Orthologs of the proAtPep1 gene have been identified in important crop species including canola, soybean, potato, tomato, rice and poplar.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>