Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecule discovered in the battle between plants and disease

19.07.2005


Washington State University researcher’s findings could help crops fend off disease



Scientists at Washington State University in Pullman have discovered a molecule that plays a role in the battle plants must win against bacteria and fungi that would eat them for lunch. The group led by Professor Clarence A. "Bud" Ryan isolated a small protein called Pep1 that appears to act like a hormone, signaling to the rest of the plant to raise its defenses at the first sign of an infection. They also discovered the receptor protein to which Pep1 binds to exert its protective effects.

Pep1 was isolated from the plant Arabidopsis thaliana, which is a species favored by investigators for attributes that facilitate experimentation, but the same molecule is found in crop species such as canola, soybean, potato, tomato, rice, and poplar. Therefore, further work on Pep1 and its receptor could lead to a general increase in the resistance of crops to pathogens, which could greatly benefit farmers. Already, the researchers have used the Pep1 gene to increase the resistance of Arabidopsis plants to a fungal pathogen called Pythium irregulare.


These findings will be presented July 20, at 11:20 at the ASPB meeting at the Washington State Convention and Trade Center in Seattle, WA.

The abstract, #9183, is below:
Authors:
Presenter: Huffaker, Alisa
Authors: Huffaker, Alisa (A) alisamari@yahoo.com; Pearce, Gregory (A) pearceg@mail.wsu.edu; Ryan, Clarence, A (A) cabudryan@hotmail.com;

Affiliations: (A): Institute of Biological Chemistry, Washington State University

Title: A novel peptide signal, AtPep1, regulates pathogen defense in Arabidopsis

AtPep1 is a 23 amino acid peptide that was isolated from Arabidopsis thaliana (G. Pearce, A. Huffaker, C.A. Ryan, submitted). The peptide is encoded by a gene at the locus At5g64900 and is derived from the carboxyl terminus of a 92 amino acid precursor, proAtPep1, a scenario commonly found in both animal and plant peptide precursors. No physiological role was known for AtPep1, and a function was sought in Arabidopsis by incubating plants under a variety of conditions and monitoring expression of the proAtPep1 gene. Cold and dehydration stress and exposure to ABA or MeSA did not affect the expression of proAtPep1, but wounding, exposing plants to methyl jasmonate (MeJA), or supplying plants with the AtPep1 peptide through cut petioles induced expression of the gene. Also expressed in response to AtPep1 were the PDF1.2 gene (a plant defensin) and the PR-1 gene, (a pathogenesis-related gene). Two wound-related genes, LOX2 and VSP2, were not induced by AtPep1. Supplying AtPep1 to jasmonate-deficient fad3-2 fad7-2 fad8 mutant plants did not induce the proAtPep1, PDF1.2 or PR-1 genes, indicating that AtPep1 signaling involves the octadecanoid pathway. AtPep1 induction of defense genes in excised Arabidopsis leaves was inhibited by DPI, implicating the generation of H2O2 in the signaling pathway. Constitutively overexpressing the proAtPep1 gene in Arabidopsis induced a constitutive activation of PDF1.2, PR-1, and tyrosine amino transferase (TAT3) genes, but not the expression of LOX2 or VSP2 genes. The transgenic plants were more resistant toward the oomycete root pathogen Pythium irregulare than wild-type plants, evidenced by a more robust leaf and root growth upon infection. ProAtPep1 belongs to a seven member gene family in Arabidopsis with tissue-specific paralogs that exhibit differential expression profiles. Orthologs of the proAtPep1 gene have been identified in important crop species including canola, soybean, potato, tomato, rice and poplar.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>