Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light-sensing protein illuminates sun-loving ocean bacteria


About 13% of bacteria near the ocean’s surface contain proteorhodopsin, a membrane protein able to harness sunlight’s energy, according to a new study by Oded Beja and colleagues in the open-access journal PLoS Biology. Given the dearth of nutrients in their environment, these oligotrophic bacteria must generate their energy from a variety of sources. The study reveals that proteorhodopsin is uniquely suited to capturing the high-radiation sunlight that illuminates the sea. Through the use of meta-genomic analysis, the authors also observed great diversity among proteorhodopsin genes.

Ocean bacteria with the light-sensitive proteorhodopsin enzyme live several meters above this coral reef. (Photo: Boaz Harel)

Estimating the average size of the bacterial genome led Beja and colleagues to the conclusion that about 13% of ocean bacteria encode proteorhodopsin. "This is a big chunk of the population that is harvesting light in a different way than photosynthesis," says Beja. He added that his study "is the first to report fast photocycles with the so-called blue proteorhodopsins. This means both blue and green proteorhodopsins can act as proton pumps" to harvest energy because they contain proteorhodopsin. The authors also found some evidence suggesting that many of the bacteria with proteorhodopsin might be able to metabolize sulfur, a common energy source for deep-sea life. The marine bacteria might additionally be able to manufacture retinal, a molecule typically associated with vision.

The authors skimmed their bacteria samples from the top, or photic layer, of the Mediterranean and Red Seas. Since these bacteria can’t survive typical lab conditions, the scientists inserted large segments of collected ocean bacterial DNA into host bacteria to create an amplified collection of the genome known as a large-insert bacterial artificial chromosome (BAC) library. To detect the gene segments of interest, the scientists used "specially designed PCR primers that can detect almost all proteorhodopsins reported today," Beja explains.

Many other organisms use proteins resembling proteorhodopsin for different functions. Humans, for instance, use rhodopsin to sense light in the eyeball. The presence of rhodopsin-like proteins in a wide range of life may eventually provide hints to the protein’s evolutionary age. That this large class of transmembrane proteins was so well-conserved over a long evolutionary time scale provides evidence for complex ancient proteins. The new study also raises the question of whether bacteria use proteorhodopsin solely for energy transduction or also for sensory input as humans use rhodopsin.

Paul Ocampo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>