Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elevated temperature enhances success of viral cancer therapy

19.07.2005


A therapeutic approach for battling cancer that is based on infection with a specially designed virus similar to the one that causes the common cold has shown promise in clinical trials. Now, new research suggests that fever might be a useful weapon in the fight as well. The study, published in the July issue of Cancer Cell, demonstrates that tumor cells are even more sensitive to viral therapy after they have been incubated at an elevated temperature. The findings could have a significant impact on the future success of viral strategies for cancer therapy.



ONYX-015 is a mutated adenovirus that undergoes selective replication in tumor cells until the cells become so full of virus that they burst and die. The virus is modified so that it only copies itself in tumor cells and is safe for normal cells. In clinical trials, ONYX-015 was a successful therapy for many cancer patients, but the success varied considerably for reasons that were not well understood. Dr. Clodagh C. O’Shea and colleagues from the Cancer Research Institute at the University of California, San Francisco examined why ONYX-015 did not undergo replication in some cancer cells and if it might be possible to sensitize tumor cells to ONYX-015 therapy.

The researchers demonstrated that resistant tumor cells fail to complete an RNA export function that is necessary for ONYX-015 replication. Interestingly, when a cellular heat shock response was induced in the resistant tumor cells, either pharmacologically or by incubating the cells at an elevated temperature similar to that experienced by humans when they have a fever, the RNA export function was restored. Therefore, induction of the heat shock response could rescue ONYX-015 replication in resistant tumor cells.


According to Dr. O’Shea, "Our data suggest that a clinical strategy that does not advocate the use of pharmacological agents to suppress fever would favor the tumor-selective replication of ONYX-015. This study indicates that induction of a heat shock response by pharmacological agents (that could potentially be administered systemically) or local hyperthermia, could greatly augment and broaden ONYX-015’s clinical utility as a cancer therapy."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>