Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UQ researchers tackle emotions head on – at the cellular level

18.07.2005


University of Queensland researchers have identified a protein that is crucially involved in how our memories are stored and processed, paving the way for new strategies to treat conditions certain mental disorders.



Dr Louise Faber and Professor Pankaj Sah, from UQ’s Queensland Brain Institute (QBI), have been studying how cells in the brain form memories.

"What we were looking at in particular is how the memory of emotions, such as fear and anxiety, are laid down," Dr Faber said.


Professor Sah said the way strong emotions can effect our memories can be described by picturing a scene of someone sitting on a train listening to a piece of music.

"If that person is then subjected to a horrible tragedy such as a train crash, then the next time they hear that song it can bring back, in very vivid detail, that event and all the negative emotions associated with the crash," Professor Sah said.

Dr Faber said the part of the brain they were looking at was the amygdala, which mediates emotion and is believed to be the source of some mental disorders when the way information is processed malfunctions.

"In particular, fearful memories that underlie disorders such as post-traumatic stress disorder and anxiety are thought to be mediated by long term changes in the strength of connections between cells in the amygdala," Dr Faber said.

"We found a particular protein is crucially involved in regulating information processing and storage in the amygdala.

"When we blocked this protein with a specific blocker, the strength of connections between cells was greatly enhanced."

Dr Faber said the implications of this work could lead to developing novel strategies to treat mental disorders mediated by the amygdala, such as panic attacks, post traumatic stress disorder anxiety and depression.

The researchers’ work was recently published in the highly prestigious scientific journal Nature Neuroscience.

The QBI is home to leading researchers in neural stem cell research and are currently conducting research into finding ways to stimulate the production of new functional nerve cells to overcome diseases such as dementia (particularly Alzheimer’s disease), stroke, motor neuron disease, head and spinal cord injury, addiction and mental health.

Andrew Dunne | EurekAlert!
Further information:
http://www.uq.edu.au

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>