Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in NOTCH1 gene cause aortic valve disease

18.07.2005


By studying five generations of a Dallas family, UT Southwestern Medical Center researchers have discovered that a mutation in a key gene causes aortic valve disease, a common heart birth defect as well as a major contributor to adult heart disease. In the study, available in the online edition of the journal Nature, researchers scanned the DNA of 11 members of a family that was affected with aortic heart disease. The patients ranged from children with severe narrowing of the aortic valve to 50- and 60-year-olds who had such severe calcium buildup on their heart valves that they required replacement valves.



The UT Southwestern researchers found that all the relatives with some manifestation of aortic valve disease had a mutation in a gene called NOTCH1.

A second, smaller family in San Diego afflicted with the heart disorder also had members with a second mutation in the same gene, providing convincing evidence that the researchers had found the genetic link to aortic heart disease, said Dr. Vidu Garg, assistant professor of pediatrics and molecular biology and lead author of the study.


"Mutations in NOTCH1 cause an early developmental defect in the aortic valve," Dr. Garg said.

The aortic valve is located between the left ventricle, or lower chamber of the heart, and the largest artery, the aorta. The left ventricle pumps oxygen-rich blood into the aorta, which carries blood to the brain and the rest of the body.

The normal aortic valve is made up of three "leaflets," flaps of tissue that open and close to allow blood flow through the valve in only one direction. About 1 percent to 2 percent of the world’s population is born with only two valve leaflets, a defect called bicuspid aortic valve. The condition predisposes individuals to aortic valve stenosis, a condition that severely narrows the passage for blood to exit the heart, and in many cases, requires surgery at birth.

The narrowing of the valve can be so severe while the fetus is still developing that blood cannot get out of the ventricle. In those cases, the ventricle does not grow, and the child is born with a condition called hypoplastic left heart syndrome.

"The left ventricle of these children is almost nonexistent, and they are born with one of the most severe types of congenital heart disease, which accounts for a quarter of all children who die from heart disease," said Dr. Deepak Srivastava, senior author of the paper. Dr. Srivastava is a former professor of pediatrics and molecular biology at UT Southwestern, where he and his colleagues performed the Nature research. He currently is director of the Gladstone Institute of Cardiovascular Disease and professor of pediatrics at the University of California, San Francisco.

"We know that aortic valve problems cause those deaths, so we think NOTCH1 mutations are likely the cause of some cases of hypoplastic left heart syndrome as well," said Dr. Srivastava, who is the William and Adeline Pirag Distinguished Professor in Pediatric Developmental Cardiology.

Many people born with bicuspid aortic valve go on to develop early calcification, or hardening, of their aortic valves, which is the third most common cause of heart disease in adults. As calcium deposits build up on the valve, the leaflets do not open normally, and the heart’s ability to supply blood to the body decreases. Eventually the valve must be replaced.

"Our work suggests that calcification of the aortic valve may be a manifestation of a mutation in NOTCH1 or related genes," Dr. Garg said. "In the long term, we may be able to use that information to screen those at risk, possibly giving patients the opportunity to make a pharmacological or lifestyle intervention to slow down the progression of the calcification. I think that’s where the clinical utility of this research will most likely be."

Dr. Garg said that in order to identify possible therapeutic agents, further study is needed to determine exactly how the NOTCH1 gene leads to calcification.

"Because of these families, we found that the NOTCH1 protein normally shuts down factors that control bone development, and this may provide clues for understanding why tissues become abnormally calcified in the setting of disease," Dr. Srivastava said.

Other UT Southwestern researchers involved in the study were research technician Alecia Muth; student research assistant in internal medicine Joshua Ransom, student research assistant in surgery Marie Schluterman, programmer analyst in the Eugene McDermott Center for Human Growth and Development Robert Barnes, and pediatric fellow Dr. Isabelle King. Dr. Paul Grossfeld from UC San Diego also contributed.

John Watson | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>