Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond genes: Lipid helps cell wall protein fold into proper shape

18.07.2005


It takes more than the genetically coded sequence for a membrane protein to fold and function. Its lipid environment also plays a role.



A protein that provides a vital passage through a bacterium’s outer cell wall will misfold and malfunction if that wall is built of the ’wrong’ material, scientists at The University of Texas Medical School at Houston report in a finding that has long-term implications for understanding diseases caused by misfolded proteins such as cystic fibrosis, Alzheimer’s disease, and mad cow disease.

The paper in today’s Journal of Biological Chemistry by Professor of Biochemistry and Molecular Biology William Dowhan, Ph.D., and colleagues shows that phospholipids, which make up the permeable barrier of cell membranes, play a direct role in the folding of membrane proteins – proteins that penetrate the membrane or bind to either side of it.


"What we’ve demonstrated again is that it’s not just a membrane protein’s genetically determined sequence that dictates how it folds so that it can function properly. Its lipid environment also plays a role," Dowhan said. "People used to assume that specific lipids made no difference."

In the JBC paper, Dowhan and colleagues looked at how a protein called GabP, which transports an amino acid across the membrane of the bacterium E. coli, is affected by the presence of a phospholipid named phosphatidylethanolamine, or PE for short.

Phospholipids, unlike their fatty acid and cholesterol cousins, include a phosphate group that spurs them to form a bilayer with water-friendly outer layers sandwiching an impermeable water-unfriendly inner layer that defines the outer surface of cells. Transport of nutrients and waste material across the cell membrane is then governed by the specific proteins associated with it.

In a strain of E. coli lacking PE, the GabP protein misfolded, with two areas of the protein inverting from their normal structure. The PE-lacking protein’s amino acid transfer rate plummeted to nearly zero, falling 99 percent compared to the transfer rate in unaltered E. coli with PE.

GabP is the third membrane protein that Dowhan and colleagues have shown to be affected by the presence of PE.

The team is using the E. coli model to discover how all proteins fold in the membrane, not just transport proteins such as GabP but also biosynthetic proteins that manufacture complex compounds such as proteins and fats out of simple compounds.

"The next goal now that we’ve defined the phenomenon is to get into the specifics, find the mechanisms by which these proteins fold. What part of the protein interacts with the lipid, and what part of the lipid with the protein?" said Dowhan, who holds the John S. Dunn Sr. Chair in Biochemistry and Molecular Biology and is on the Graduate School of Biomedical Sciences faculty.

Understanding the molecular basis for membrane protein folding will help researchers address serious diseases caused by misfolded proteins. "In cystic fibrosis, Alzheimer’s disease and mad cow disease, the dysfunctional proteins are associated with membranes," Dowhan said.

Membrane proteins make up 30 percent of known proteins. Dowhan estimates another 40 percent are loosely tied to membranes. "So you are looking at possibly 70 percent of biology occurring at or in a lipid membrane surface," Dowhan said.

Membranes and their surface proteins are accessible targets for pharmaceuticals, and most drugs target either membrane proteins on human cells or the membranes of pathogens.

Co-authors of the JBC paper with senior author Dowhan are first author Wei Zhang, Ph.D., a former graduate student who is now a post-doctoral fellow at Stanford University, and post-doctoral fellow Heidi Campbell, Ph.D., of the UT Medical School Department of Biochemistry, and Molecular Biology, and Steven King, Ph.D, associate professor, Department of Integrative Biosciences at Oregon Health & Science University.

Dowhan recently was granted a MERIT award by the National Institute of General Medical Sciences of the National Institutes of Health.

These rare awards provide long-term grant support for scientists whose research competence and productivity are distinctly superior and who are likely to continue to perform in an outstanding manner, the NIGMS notes.

MERIT (Method to Extend Research in Time) status essentially gives Dowhan a 10-year renewal to 2015 on his longstanding NIGMS grant "Structure and Function of Membrane Proteins" by providing back-to-back five-year grants of $2.4 million apiece.

In April, Dowhan received the prestigious American Society for Biochemistry and Molecular Biology Avanti Award in Lipids.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>