Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond genes: Lipid helps cell wall protein fold into proper shape

18.07.2005


It takes more than the genetically coded sequence for a membrane protein to fold and function. Its lipid environment also plays a role.



A protein that provides a vital passage through a bacterium’s outer cell wall will misfold and malfunction if that wall is built of the ’wrong’ material, scientists at The University of Texas Medical School at Houston report in a finding that has long-term implications for understanding diseases caused by misfolded proteins such as cystic fibrosis, Alzheimer’s disease, and mad cow disease.

The paper in today’s Journal of Biological Chemistry by Professor of Biochemistry and Molecular Biology William Dowhan, Ph.D., and colleagues shows that phospholipids, which make up the permeable barrier of cell membranes, play a direct role in the folding of membrane proteins – proteins that penetrate the membrane or bind to either side of it.


"What we’ve demonstrated again is that it’s not just a membrane protein’s genetically determined sequence that dictates how it folds so that it can function properly. Its lipid environment also plays a role," Dowhan said. "People used to assume that specific lipids made no difference."

In the JBC paper, Dowhan and colleagues looked at how a protein called GabP, which transports an amino acid across the membrane of the bacterium E. coli, is affected by the presence of a phospholipid named phosphatidylethanolamine, or PE for short.

Phospholipids, unlike their fatty acid and cholesterol cousins, include a phosphate group that spurs them to form a bilayer with water-friendly outer layers sandwiching an impermeable water-unfriendly inner layer that defines the outer surface of cells. Transport of nutrients and waste material across the cell membrane is then governed by the specific proteins associated with it.

In a strain of E. coli lacking PE, the GabP protein misfolded, with two areas of the protein inverting from their normal structure. The PE-lacking protein’s amino acid transfer rate plummeted to nearly zero, falling 99 percent compared to the transfer rate in unaltered E. coli with PE.

GabP is the third membrane protein that Dowhan and colleagues have shown to be affected by the presence of PE.

The team is using the E. coli model to discover how all proteins fold in the membrane, not just transport proteins such as GabP but also biosynthetic proteins that manufacture complex compounds such as proteins and fats out of simple compounds.

"The next goal now that we’ve defined the phenomenon is to get into the specifics, find the mechanisms by which these proteins fold. What part of the protein interacts with the lipid, and what part of the lipid with the protein?" said Dowhan, who holds the John S. Dunn Sr. Chair in Biochemistry and Molecular Biology and is on the Graduate School of Biomedical Sciences faculty.

Understanding the molecular basis for membrane protein folding will help researchers address serious diseases caused by misfolded proteins. "In cystic fibrosis, Alzheimer’s disease and mad cow disease, the dysfunctional proteins are associated with membranes," Dowhan said.

Membrane proteins make up 30 percent of known proteins. Dowhan estimates another 40 percent are loosely tied to membranes. "So you are looking at possibly 70 percent of biology occurring at or in a lipid membrane surface," Dowhan said.

Membranes and their surface proteins are accessible targets for pharmaceuticals, and most drugs target either membrane proteins on human cells or the membranes of pathogens.

Co-authors of the JBC paper with senior author Dowhan are first author Wei Zhang, Ph.D., a former graduate student who is now a post-doctoral fellow at Stanford University, and post-doctoral fellow Heidi Campbell, Ph.D., of the UT Medical School Department of Biochemistry, and Molecular Biology, and Steven King, Ph.D, associate professor, Department of Integrative Biosciences at Oregon Health & Science University.

Dowhan recently was granted a MERIT award by the National Institute of General Medical Sciences of the National Institutes of Health.

These rare awards provide long-term grant support for scientists whose research competence and productivity are distinctly superior and who are likely to continue to perform in an outstanding manner, the NIGMS notes.

MERIT (Method to Extend Research in Time) status essentially gives Dowhan a 10-year renewal to 2015 on his longstanding NIGMS grant "Structure and Function of Membrane Proteins" by providing back-to-back five-year grants of $2.4 million apiece.

In April, Dowhan received the prestigious American Society for Biochemistry and Molecular Biology Avanti Award in Lipids.

Scott Merville | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>