Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JILA study of RNA dynamics may help in drug design

15.07.2005


Biophysicists have developed a method for studying, in real time, a nanoscale "docking and undocking" interaction between small pieces of ribonucleic acid (RNA), a technique that may be broadly useful in studying structural changes in RNA that affect its function. The research at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and University of Colorado at Boulder, may have applications in the design of effective new drugs based on small RNA strands.


These false-color images show the behavior of about 30 to 40 single RNA molecules tagged with fluorescent dyes in the absence of magnesium (left) and with high magnesium concentrations (right). Green indicates that the tagged molecules are farther apart (undocked) whereas red indicates they are closer together (docked), showing that magnesium promotes docking.



RNA is a chain-like molecule that contains genetic information, makes proteins and catalyzes biological reactions. Scientists at JILA are studying RNA using methods that reveal how individual chemical units of RNA dock, or lightly and temporarily bond, to form special three-dimensional shapes that exhibit biochemical activity. The latest work, to be published the week of July 11 in the Proceedings of the National Academy of Sciences,* adds to understanding of the intramolecular "stickiness" between specific loops and sequences in the RNA that help stabilize this folding. This type of information is crucial to understanding RNA structure and, ultimately, how it affects function.

The JILA group developed a simple model system for studying the reversible docking of a small piece of RNA at a receptor site in the same molecule. They used a technique called fluorescence resonance energy transfer, in which the two pieces of RNA are labeled with different dyes that have overlapping emission bands. One dye emits light of the same color that the other dye absorbs; the second dye then emits light of a different color. One piece of RNA is excited by a laser and, when the two pieces are close enough together to dock, passes energy to the other one, which then fluoresces. This method was used to measure the distance between the two pieces of RNA as it varied from less than 4 nanometers in the docked state to about 7 nm in the undocked state.


The scientists used ultrasensitive laser-based microscopy methods to image many isolated RNA molecules simultaneously, in effect generating a "movie" of single molecule docking kinetics in real time. They used this method to study thousands of pieces of RNA over time scales of 10 to 30 seconds, and observed about two-thirds of them rapidly docking and undocking. The rates of docking and undocking were measured as a function of the concentration of magnesium ions in the surrounding fluid, revealing a complex dependence on metal ions, as is typical for RNA. The docking rate rose 12-fold as magnesium concentrations increased. A significant number of molecules still docked in the absence of magnesium--the first time this phenomenon has been observed, according to the paper.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>