Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at UGA provide first look at protein expression in Chagas disease-causing parasites

15.07.2005


Nearly 20 million people worldwide are infected with a parasitic ailment called Chagas Disease, and nearly a third of those will develop severe heart trouble. Although options for treatment are poor and there are no vaccines, a new study by scientists at the University of Georgia of proteins in the parasite that causes the disease may offer hope.



The first-ever global survey of protein expression in the four lifecycle stages of Trypanosoma cruzi, the parasite that causes the disease, could help lead to vaccine discovery and new drug targets, according to Dr. Rick Tarleton, a cellular biologist in UGA’s Center for Tropical and Emerging Global Diseases (CTEGD) and lead researcher.

"This work provides a first view into some of the complex biology of this organism," said Tarleton. "It helps tell us which of its genes are expressed as proteins and in what stages."


The research was published today in the journal Science. The research was conducted by Tarleton with colleagues James Atwood and Brent Weatherly, also of the CTEGD; Dr. Ron Orlando and his laboratory at UGA’s Complex Carbohydrate Research Center; and with help from Dr. Fred Opperdoes of Catholic University in Brussels.

The paper is part of a large section on parasite genomes in the current issue of Science. Tarleton is co-author of the paper on the T. cruzi genome.

Chagas Disease is a pervasive problem in tropical climates. The disorder is named after Brazilian doctor Carlos Chagas who first discovered the parasite that causes the disease in 1910. While T. cruzi is also found in many other animals, including cats, dogs and rodents, it is unlikely that the parasite in those animals can be transmitted directly to humans. The disease in people is transmitted by insects that bite humans then defecate, passing the parasite into the blood stream when victims scratch the wound site or touch it and then touch a vulnerable mucus membrane site such as the eyes.

Despite the widespread nature of the disease, available treatments are unreliable, and no vaccine against the parasite has ever been developed. That’s why Tarleton and his colleagues studied the T. cruzi "proteome"--proteins it expresses. The issue is complex, since the parasite has four lifecycle stages.

The research confirmed some of the predictions of gene expression in the just-completed gene map of T. cruzi. It also showed, for the first time, which genes express proteins in the four development stages.

"This provides a wealth of interesting biology we didn’t know before, but it also gives us ways to put the information to use," said Tarleton. "What we found on stage specificity and abundance of protein expression provides new criteria for selecting vaccine targets. Additional information on the expression of large gene families may influence decisions on their utility as vaccine candidates."

While the proteome analysis, in conjunction with the genome, provides new avenues for drug and vaccine discovery, limitations remain. Unlike the genome, which provides a comprehensive view of the entire organism, the proteomes are partial and preliminary.

"Unfortunately, current technology doesn’t allow for the easy detection of very low abundance proteins," said Tarleton. "Also, it can look only at relative expression of proteins in different stages."

Still, understanding how proteins work in T. cruzi is an important first step toward helping end the misery that plagues so many people. Researchers estimate than around 90 million people are at risk for Chagas Disease. In endemic areas, it is associated with other parasitic diseases, tuberculosis, HIV and malnutrition as a typical "social disease" among the rural poor.

Blood transfusions tainted with T. cruzi are also a serious problem in South America, and costs associated with control and treatment run into the billions of dollars each year. While the disease is rare in the United States, conditions in the far southeastern and southwestern parts of the country make it as least potentially susceptible to the disorder.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>