Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elderly mice yield clues to the process of growing old

15.07.2005


Delving deep into the molecular subtleties of a strain of mice engineered to age rapidly, scientists have found that an accumulation of genetic mutations prompts a cascade of programmed cell death that seems to underpin the aging process.

Writing today (July 15, 2005) in the journal Science, a team of scientists led by University of Wisconsin-Madison geneticist Tomas A. Prolla describes a series of experiments in mutant and normal mice that peel away some of the root secrets of mammalian aging.

Growing old, according to the new study, occurs, in part, as mutations build up in the DNA of energy-generating mitochondria, triggering the death of critical cells that lead to such things as hair and weight loss, hearing and vision impairment, loss of muscle mass, weakened bones and fewer circulating red blood cells. Mitochondria are structures within cells that provide energy for cells to move, divide, contract and secrete products vital for the health of organisms. "We think that the key to what is happening in aging is that as (genetic) mutations or DNA damage accumulates, critical cells die," says Prolla. "These experiments favor a major role for programmed cell death in aging."



If true, the new insights may one day lead to opportunities to stave off old age through drugs that could prevent the gathering of genetic defects in mitochondrial DNA, genetic material that resides outside of the nucleus of a cell and that helps power critical cell processes. Such insight could also lead to strategies to restore some functions such as hearing by protecting mitochondrial DNA from naturally occurring mutations.

Using mice genetically altered to have a deficiency in a protein that proofreads mitochondrial DNA and thus accumulate genetic mutations at a higher rate than unaltered mice, the group led by Prolla found evidence that programmed cell death, known as apoptosis, was greatly accelerated. The altered mice exhibited obvious hallmarks of aging -- including graying, hair loss and atrophied muscle and bone -- at a pace much faster than the typical laboratory mouse.

"It’s like a broken spellchecker," says Prolla. "By introducing a malfunction in the (genetic) proofreading domain, these mutations accumulate much more rapidly."

The new work lends support to one of the two leading theories of how animals, including humans, grow old and die. It supports the theory that apoptosis or programmed cell death underpins aging. A competing theory holds that oxidative stress -- the body’s reaction to oxygen and the production of reactive, cell-damaging molecules known as free radicals -- is responsible for the aging process.

According to the new Science report, markers of oxidative stress did not parallel the accumulation of mitochondrial genetic mutations. Instead, the group found evidence that indicated accelerated cell death, especially in tissues characterized by rapid turnover of cells, occurred as mutations mounted in the mitochondrial DNA.

"We found no evidence of oxidative stress," Prolla explains. In fact, the team noted less oxidative stress in some tissues - the liver, for example - which suggests that accumulated genetic mutations in mitochondria slow metabolism. In turn, that change prompts cells to produce fewer of the reactive free radical molecules.

The symptoms of aging become pronounced with the loss of some critical cells, notably adult stem cells from some tissues and that are essential for replacing cells that die. "If these stem cells are lost, tissue structure and the ability of tissue to regenerate are impaired," Prolla explains. "We have observed that in tissues like bone marrow, intestine and hair follicles."

The altered mice used in the study were created by manipulating mouse embryonic stem cells to produce mice with the defective DNA proofreading protein. The mice develop normally, but age rapidly and develop such things as age related heart dysfunction, hair loss, loss of immune cells, anemia, and loss of male germ cells that lead to reduced sperm production and infertility.

Intriguingly, the mice develop symptoms of old age, notably gray hair and hair loss, more commonly seen in humans than mice.

Prolla suggests that new studies of mice engineered to have fewer than normal mitochondrial DNA defects or improved mitochondrial function may pave the way for strategies to retard aging. "The idea would be to reduce the level of cell death and improve function. If that pans out, then we can begin to think about pharmaceutical interventions to retard aging by preserving mitochondrial function."

Tomas A. Prolla | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>