Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural cell transplants fight immune attack in mice with multiple sclerosis

14.07.2005


Researchers at the San Raffaele Hospital (Milan, Italy) published unexpected results of studies in which immature nerve cells (adult mouse neural stem cells) injected into the blood of mice with MS-like disease were able to suppress the immune attacks that damage the brain and spinal cord tissues. The study, funded in part by the National MS Society, is being reported by Drs. Stefano Pluchino, Gianvito Martino and colleagues in the July 14, 2005 issue of Nature. These surprising findings, if confirmed, suggest that neural stem cells that reside in the adult brain may not only serve as replacement cells for tissue repair, but in some circumstances may also protect the brain from inflammation. Further research is needed to confirm these results and to address multiple issues involved in translating such experiments into finding ways to fight the immune attack and protect and repair brain tissues in people with MS.



Background: In recent years, scientists have been exploring ways to repair the damage of brain and spinal cord tissues during the course of the immune attack in MS. Evidence suggests that the body successfully repairs some myelin damaged in MS, but not enough to keep up with its loss. Research has shown that adult brains contain stem cells – also known as precursors or progenitors – that might serve as replacement cells. It has been hoped that, given the right signals, these may be stimulated to grow into viable new tissue. The search for these signals is an active area of research. Another possibility being explored is cell transplantation.

Studies involving transplantation of immature myelin-making cells (oligodendrocyte precursors) have been to some degrees successful in rodent models, triggering recovery of function and restoring nerve conduction. However, such repair has only been successful in isolated areas of the brain, whereas MS and MS-like diseases in animal models involve lesions scattered throughout the brain and spinal cord. Finding a way to introduce potential replacement cells that can migrate throughout the central nervous system and home in on damaged areas has presented a significant hurdle in this field.


The San Raffaele Hospital team and others have been investigating transplantation of neural stem cells, which have the potential to develop into various types of brain cells – including nerve cells and myelin-making cells – and which appear capable of expanding their numbers extensively, and moving to distant sites of injury within the brain. In 2003, they reported that neural stem cells transplanted into mice with an MS-like disease were able to migrate to multiple areas of myelin and nerve fiber damage in mice with an MS-like disease, repair this damage, and restore clinical function. (Nature 2003;422:688-694). In the current study, the team attempted to define the mechanisms responsible for the migration of these cells into the brain and to sites of injury. This study was funded in part by the National MS Society (USA), the Myelin Project, the Italian MS Foundation and the Italian Minister of Health.

The Study: Dr. Pluchino and colleagues injected neural stem cells, taken from the brains of adult mice, into the blood of mice with a relapsing-remitting form of EAE, an MS-like disease. Relapsing-remitting disease involves clearly defined flare-ups followed by partial or complete remissions. Some mice were injected at the onset of disease, and others at the onset of the first relapse.

Mice in which neural stem cells were injected at disease onset started to recover between 30 and 60 days, and experienced a twofold reduction in relapses compared with untreated mice. Mice injected at the first relapse started to recover later, but showed a threefold reduction of the relapse rate between 60 and 90 days, compared with untreated mice. Both groups showed a significant reduction in the extent of myelin damage and nerve fiber loss compared to untreated mice.

The team then explored the mechanism by which the neural stem cells entered the brain from the bloodstream. They reported that a protein on their surface called VLA-4, which is also found on immune cells and allows them to cross from the blood into the brain, facilitated their movement into the brain. In addition, the investigators reported finding a wide range of immune proteins to be active on the transplanted neural stem cells; these proteins serve as “docking sites” to receive signals from immune cells active in the attack. Furthermore, they reported that a portion of the transplanted cells remained in an immature state and accumulated in the brain around blood vessels (perivascular areas) where immune cells enter the brain during active disease. These transplanted cells showed signs of being able to turn off activated immune cells and reduce inflammation, thus protecting brain tissues from immune-mediated damage.

Conclusion: These exciting and unexpected findings from a respected group of investigators, if confirmed, suggest that transplanted neural stem cells may serve not only as replacement cells for tissue repair, but in some circumstances may also protect the brain from inflammation. Further research is needed to confirm these results and to address multiple issues involved in translating such experiments into finding ways to fight the immune attack and protect and repair brain tissues in people with MS.

-- Research and Clinical Programs

Arney Rosenblat | EurekAlert!
Further information:
http://www.nmss.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>