Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neural cell transplants fight immune attack in mice with multiple sclerosis


Researchers at the San Raffaele Hospital (Milan, Italy) published unexpected results of studies in which immature nerve cells (adult mouse neural stem cells) injected into the blood of mice with MS-like disease were able to suppress the immune attacks that damage the brain and spinal cord tissues. The study, funded in part by the National MS Society, is being reported by Drs. Stefano Pluchino, Gianvito Martino and colleagues in the July 14, 2005 issue of Nature. These surprising findings, if confirmed, suggest that neural stem cells that reside in the adult brain may not only serve as replacement cells for tissue repair, but in some circumstances may also protect the brain from inflammation. Further research is needed to confirm these results and to address multiple issues involved in translating such experiments into finding ways to fight the immune attack and protect and repair brain tissues in people with MS.

Background: In recent years, scientists have been exploring ways to repair the damage of brain and spinal cord tissues during the course of the immune attack in MS. Evidence suggests that the body successfully repairs some myelin damaged in MS, but not enough to keep up with its loss. Research has shown that adult brains contain stem cells – also known as precursors or progenitors – that might serve as replacement cells. It has been hoped that, given the right signals, these may be stimulated to grow into viable new tissue. The search for these signals is an active area of research. Another possibility being explored is cell transplantation.

Studies involving transplantation of immature myelin-making cells (oligodendrocyte precursors) have been to some degrees successful in rodent models, triggering recovery of function and restoring nerve conduction. However, such repair has only been successful in isolated areas of the brain, whereas MS and MS-like diseases in animal models involve lesions scattered throughout the brain and spinal cord. Finding a way to introduce potential replacement cells that can migrate throughout the central nervous system and home in on damaged areas has presented a significant hurdle in this field.

The San Raffaele Hospital team and others have been investigating transplantation of neural stem cells, which have the potential to develop into various types of brain cells – including nerve cells and myelin-making cells – and which appear capable of expanding their numbers extensively, and moving to distant sites of injury within the brain. In 2003, they reported that neural stem cells transplanted into mice with an MS-like disease were able to migrate to multiple areas of myelin and nerve fiber damage in mice with an MS-like disease, repair this damage, and restore clinical function. (Nature 2003;422:688-694). In the current study, the team attempted to define the mechanisms responsible for the migration of these cells into the brain and to sites of injury. This study was funded in part by the National MS Society (USA), the Myelin Project, the Italian MS Foundation and the Italian Minister of Health.

The Study: Dr. Pluchino and colleagues injected neural stem cells, taken from the brains of adult mice, into the blood of mice with a relapsing-remitting form of EAE, an MS-like disease. Relapsing-remitting disease involves clearly defined flare-ups followed by partial or complete remissions. Some mice were injected at the onset of disease, and others at the onset of the first relapse.

Mice in which neural stem cells were injected at disease onset started to recover between 30 and 60 days, and experienced a twofold reduction in relapses compared with untreated mice. Mice injected at the first relapse started to recover later, but showed a threefold reduction of the relapse rate between 60 and 90 days, compared with untreated mice. Both groups showed a significant reduction in the extent of myelin damage and nerve fiber loss compared to untreated mice.

The team then explored the mechanism by which the neural stem cells entered the brain from the bloodstream. They reported that a protein on their surface called VLA-4, which is also found on immune cells and allows them to cross from the blood into the brain, facilitated their movement into the brain. In addition, the investigators reported finding a wide range of immune proteins to be active on the transplanted neural stem cells; these proteins serve as “docking sites” to receive signals from immune cells active in the attack. Furthermore, they reported that a portion of the transplanted cells remained in an immature state and accumulated in the brain around blood vessels (perivascular areas) where immune cells enter the brain during active disease. These transplanted cells showed signs of being able to turn off activated immune cells and reduce inflammation, thus protecting brain tissues from immune-mediated damage.

Conclusion: These exciting and unexpected findings from a respected group of investigators, if confirmed, suggest that transplanted neural stem cells may serve not only as replacement cells for tissue repair, but in some circumstances may also protect the brain from inflammation. Further research is needed to confirm these results and to address multiple issues involved in translating such experiments into finding ways to fight the immune attack and protect and repair brain tissues in people with MS.

-- Research and Clinical Programs

Arney Rosenblat | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>