Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subtle changes in normal genes implicated in breast cancer

14.07.2005


New search method could aid in the discovery of biomarkers



Using a super-efficient method they invented to search for a type of cancer-related change in all genes of a cell, Dana-Farber Cancer Institute researchers have discovered new evidence about how the "microenvironment" of breast cancers helps drive the cancers’ growth and migration.

The scientists found that non-cancerous cells surrounding young breast cancers -- the microenvironment -- undergo epigenetic modifications. (Epigenetic modifications affect genetic function and are passed along to the cell’s offspring, but they don’t alter a gene’s actual structure or DNA.) The subtly altered gene function causes the microenvironment cells to send signals to the breast tumor cells to grow fast and become more aggressive.


"This is the first demonstration that epigenetic occur in the supportive cells of a tumor, and this further emphasizes that surrounding cells play an active role in cancer formation and growth," says Kornelia Polyak, MD, PhD. "These changes in the microenvironment may occur before breast duct cells undergo genetic changes that cause cancer, thus detecting the epigenetic alterations may be a means of early cancer diagnosis or even predicting cancer risk."

Polyak is senior author of the paper, which was posted this week as an advance online publication on the Nature Genetics web site, http://www.nature.com/ng. The first author of the paper is Min Hu, PhD, of Dana-Farber.

Polyak and her colleagues had previously shown that the genes in the microenvironment surrounding the breast’s milk ducts were overactive, and that they continued to be overactive when their cells reproduced, even though their DNA had not been altered. She suspected that the methylation state of the cells’ DNA was being inherited. A gene’s activity can be regulated by a kind of chemical switch process, methylation, when units called methyl groups are added or removed from the gene’s DNA. The on-off pattern of methylation in a cell’s genes can be passed from one generation to another, even when the DNA remains unchanged. This is an example of an epigenetic modification.

Cancer is often associated with less-than-normal methylation of cells’ DNA. Techniques exist for checking the methylation state of a cell, gene by gene. But Polyak and her colleagues, looking to obtain the methylation pattern of a cell’s entire genome (approximately 20,000-25,000 genes) at once, devised a method called Methylation Specific Digital Karyotyping (MSDK) that can read a cell’s complete methylation profile. Polyak and her colleague obtained a profile of the entire genome in a few weeks, a task that would have taken several weeks to months, if it was even possible, using conventional methods.

Using MSDK to study breast cancer tissue, the scientists tested the epithelial and myoepithelial cells that line the breast ducts, and the surrounding cells, known as stoma, including fibroblasts. They found that in all of these cell types, gene expression was altered by epigenetic methylation changes that were not present in normal breast tissue cells.

Most breast cancers develop in the inner lining of the breast’s milk ducts. Some cancerous lesions remain confined within the ducts for years -- called ductal carcinoma in situ or DCIS. Others become invasive, breaking through the walls of the duct into the breast tissue, and threatening to metastasize throughout the body. In previous work, the Dana-Farber scientists showed that the stromal cells of the microenvironment, while not malignant themselves, can goad the cancer cells within the duct into more aggressive action. This insight, the researchers commented, provide a rationale for future chemotherapy that targets the stromal cells as well as the tumors themselves.

In addition to furthering scientific understanding of how breast cancers grow, the method and the new findings could aid in the discovery of biomarkers, or physical changes that could be used in the early detection of breast cancers before they can be diagnosed by conventional means.

Polyak said that Dana-Farber has filed for a patent on the method and the genes identified as aberrantly methylated in the various cell types, and is working with a company to use it for the development of diagnostic tools for early breast cancer diagnosis.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>