Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UIC researchers show protein routes messages in nerve cells


Nerve cells relay messages at blink-of-the-eye speeds by squirting chemicals called neurotransmitters across tiny gaps called synapses to awaiting message receptors. But lots of different receptors and neurotransmitters work simultaneously. Which goes where to send the proper message?

Research reported in the July 20 issue of the Journal of Neuroscience (released online July 13) by a team led by David Featherstone, a University of Illinois at Chicago assistant professor of biology, provides some important preliminary answers.

Featherstone and UIC post-doctoral associate Kaiyun Chen, along with German researchers Carlos Merino and Stephan Sigrist at the European Neuroscience Institute in Goettingen, chose the common fruit fly as their research animal and the chemical glutamate -- present in fruit flies and humans -- as their neurotransmitter of choice.

"It’s still unknown how glutamate receptors get to precisely where they’re supposed to go on a cell in order to mediate the neurotransmission," said Featherstone. "If the receptors are not in the right place, then the message becomes less efficient. Or if receptors are the wrong type, the message could get completely mixed up."

Such mix-ups can lead to a condition called synaesthesia, where, for example, a sound may have taste, or an image may have a smell. The molecular basis of this condition remains unknown.

"It all comes down to the receptors being in the right place at the right time," said Featherstone. "So our question was, how do these receptors know where they’re supposed to go at the time they’re supposed to be there?"

Fruit flies proved to be ideal test animals for answering the question because a synapse called the neuromuscular junction in the fly works much like synapses in human brain cells.

"We can quickly mutate the flies," said Featherstone. "We looked among thousands of them for those without the glutamate receptors in the right place at the right time. Then we knew that the gene we mutated codes for a protein that is critical for getting those receptors to the right place at the right time."

Featherstone and his colleagues found that a protein called coracle -- known as 4.1 in humans -- links receptors on a nerve cell’s membrane to its internal structure, or cytoskeleton. Because 4.1 only interacts with certain receptor proteins, it functions as a sorting agent to ensure that only the correct type of receptor gets attached.

The work by the researchers also identifies the cytoskeleton proteins to which the receptors are tied: actin.

"Many researchers have identified proteins that interact with glutamate receptors, but there’s never previously been a link found to the cytoskeleton," said Featherstone. "This work finally ties the receptors to the cell framework to provide a complete picture."

Confirmation of these mechanisms in a mammal such as a mouse or a rat can help researchers understand how nerves need to be reconnected after spinal cord injury, or may open doors to developing drugs that can manipulate proteins that cause neurological diseases in humans.

Paul Francuch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>