Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleeping beauty plays a significant role in identifying cancer genes

14.07.2005


Researchers at the University of Minnesota Cancer Center and the National Cancer Institute (NCI), part of the National Institutes of Health, have discovered a new method that could accelerate the way cancer-causing genes are found and could lead to a more accurate identification of the genes, according to two studies in the July 14, 2005, issue of Nature*.

The gene identification method was developed in genetically modified mice and utilized a piece of jumping DNA, called Sleeping Beauty. Jumping genes, or transposons, insert themselves into or between genes and can activate or inactivate a gene’s normal function. Related transposons are natural to the genetic makeup of humans, animals and fish, but, through millions of years of evolution, most transposons became inactive dead-ends. In 1997, in another study, University of Minnesota researchers took defunct, non-functioning jumping genes from fish and made the genes jump again. This research had reactivated the jumping genes from millions of years of evolutionary sleep; hence the name Sleeping Beauty.

In the two current research studies, specially designed Sleeping Beauty transposons were introduced into mouse DNA and made to jump around in the nucleus of mouse cells. Eventually the transposons jumped into cancer-causing genes and caused a tumor to form. By isolating and studying the genes from tumors that contained Sleeping Beauty, researchers were able to efficiently find genes linked to cancer by seeing whether Sleeping Beauty turned them on or off -- in effect, uncovering the fingerprint of each tumor’s cancer genes.



David Largaespada, Ph.D., associate professor and leader of the Genetic Mechanisms of Cancer Program, led the University of Minnesota Cancer Center research team. Their work focused on cancer gene discovery in solid tumors using transposon-based techniques. "Current cancer gene identification methods, such as microarrays, give correlations typically of thousands of genes, and it’s hard to know from the correlations which genes relate to cancer and which do not," said Largaespada. "By comparison, the jumping gene has inserted itself into cancer genes in the tumors we studied and thereby allows us to focus on smaller numbers of genes -- genes that we know are important to the genesis of tumors. The result is a quicker, more efficient and accurate identification of cancer-causing genes."

Nancy Jenkins, Ph.D., head of NCI’s Molecular Genetics of Development, and Neal Copeland, Ph.D., head of the Molecular Genetics of Oncogenesis in the Mouse Cancer Genetics program, led the NCI research team, which investigated the use of a highly mobile Sleeping Beauty transposon system to study lymphomas, a cancer that strikes the immune system.

"Although our discovery was made in laboratory mice," said Jenkins, "we believe that the technology used will reveal new insights into human cancer and could be translated for clinical use. Hopefully, this discovery will speed up the development of new drugs and improve already-in-use drugs that target specific genes for treatment of various types of cancer, including lymphomas.

The outcome of the new Sleeping Beauty method could be a major leap forward in understanding cancer’s weak points and thus lead to better treatments."

According to Largaespada, "About 300 human cancer-related genes have thus far been reported in the scientific literature. Most of those identified are involved in cancers of the blood system. So, there are likely to be many more cancer genes that still need to be identified."

Additionally, he noted that the Sleeping Beauty technology is capable of providing important information about the genes that current methods do not -- such as the specific combinations of mutant genes that can work together to cause cancer. "With this information, we will understand the development of tumors at the genetic level in much finer detail," he said. "This is important because no single kind of cancer is going to be cured by one drug; it is going to take a combination of drugs to attack the pathways that are required for cancer to start and continue growing."

The next step for Largaespada, Jenkins, Copeland and their colleagues will be to generate and analyze a large number of other tumors induced in mice using the Sleeping Beauty jumping gene. Largaespada and his team will focus on identifying genes causing prostate, lung and colorectal cancer; Jenkins and her team will study genes for tumors in the brain, melanoma, breast, leukemia and lymphoma.

Largaespada, Jenkins and Copeland acknowledge the difference between research in mice and actual use in humans. But as Largaespada pointed out, "We have proof of principle that we’re on the right track. We know that some of the same genes that are mutated in cancer in mice using Sleeping Beauty are also mutated in the same form of cancer in humans. An example is the Notch1 gene, which was mutated in 50 percent of mice with T cell lymphoma induced by Sleeping Beauty. The same gene is mutated in about 50 percent of people with a similar type of cancer. We believe the Sleeping Beauty method will allow us to identify many other such genes for other cancers."

*Collier L., Carlson C., Ravimohan S., Dupuy A., Largaespada D. "Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse," Nature, Vol. 436, No. 7047.

Dupuy A., Akagi K., Largaespada D., Copeland N., Jenkins N. "Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system," Nature, Vol. 436, No. 7047.

Michael Miller | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>