Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Actin moves chromosomes: Discovery changes fundamental thinking


Microtubules need a helping hand to find chromosomes in dividing egg cells, scientists have discovered. Although it was generally accepted that microtubules act alone as the cellular ropes to pull chromosomes into place, a new study by researchers at the European Molecular Biology Laboratory (EMBL) shows that this is not the case. They found that in large cells such as animal eggs, something else is needed to move the chromosomes into the correct location - fibres of the cytoskeletal molecule actin (Nature, July 13, 2005).

“No one has ever shown that actin moves chromosomes,” says Dr. Jan Ellenberg, the EMBL researcher whose group carried out the research. “We were able to do so because our group is one of the few that studies cell division in starfish - an ideal model for observing division in living animal eggs.”

The starfish is an excellent model for studying oocytes, the cells that give rise to egg cells. In this marine animal, these cells are transparent and mature quickly outside the body, and can be kept alive in a drop of seawater. That’s why EMBL scientists performed some of their experiments with collaborators at the Marine Biological Laboratory in Woods Hole, MA, USA – working with animals fresh from the ocean.

Ellenberg and PhD student Péter Lénárt studied the starfish oocytes as they underwent meiosis, a special cell division that is needed to halve the number of chromosomes in an egg before it unites with a sperm. When the protective nuclear membrane surrounding the chromosomes breaks down during meiosis, it was thought that microtubules capture the chromosomes and act as ropes to pull them to the surface and expel half of them from the cell.

But when the EMBL researchers measured the microtubules, they discovered that they were, in fact, much too short to transport the chromosomes over the long distance to the surface of the large oocyte. By using a chemical to disable the microtubules, they found that cells were still able to pull chromosomes into the proper positions.

So what was moving the chromosomes?

When they repeated the experiment with a chemical that breaks down the other major type of cellular fibres, actin, the cells lost track of their chromosomes and the new cells had unequal amounts of genetic material. This condition, called aneuploidy, is thought to be a major cause of miscarriages and some types of birth defects.

Lénárt spent 18 months optimizing an imaging technology, with help from collaborators at the German Cancer Research Center (DKFZ), to visualize the delicate actin fibres before he could confirm the group’s fundamental breakthrough. He observed a network of filamentous actin forming in the region where the nuclear membrane breaks down. This network acts as a fishnet to gather all the chromosomes together and drag them close to the short microtubules. Only then, when the chromosomes are close enough, can the microtubules latch on and pull half of them outside the cell.

The implications for this pioneering work are clear. Starfish oocytes have many similarities to those of other animals, including humans. Because this mechanism is essential to prevent chromosome loss before fertilization, advances in this field could help to explain the causes of pregnancy loss and birth defects in humans.

Trista Dawson | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>