Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Actin moves chromosomes: Discovery changes fundamental thinking

14.07.2005


Microtubules need a helping hand to find chromosomes in dividing egg cells, scientists have discovered. Although it was generally accepted that microtubules act alone as the cellular ropes to pull chromosomes into place, a new study by researchers at the European Molecular Biology Laboratory (EMBL) shows that this is not the case. They found that in large cells such as animal eggs, something else is needed to move the chromosomes into the correct location - fibres of the cytoskeletal molecule actin (Nature, July 13, 2005).



“No one has ever shown that actin moves chromosomes,” says Dr. Jan Ellenberg, the EMBL researcher whose group carried out the research. “We were able to do so because our group is one of the few that studies cell division in starfish - an ideal model for observing division in living animal eggs.”

The starfish is an excellent model for studying oocytes, the cells that give rise to egg cells. In this marine animal, these cells are transparent and mature quickly outside the body, and can be kept alive in a drop of seawater. That’s why EMBL scientists performed some of their experiments with collaborators at the Marine Biological Laboratory in Woods Hole, MA, USA – working with animals fresh from the ocean.


Ellenberg and PhD student Péter Lénárt studied the starfish oocytes as they underwent meiosis, a special cell division that is needed to halve the number of chromosomes in an egg before it unites with a sperm. When the protective nuclear membrane surrounding the chromosomes breaks down during meiosis, it was thought that microtubules capture the chromosomes and act as ropes to pull them to the surface and expel half of them from the cell.

But when the EMBL researchers measured the microtubules, they discovered that they were, in fact, much too short to transport the chromosomes over the long distance to the surface of the large oocyte. By using a chemical to disable the microtubules, they found that cells were still able to pull chromosomes into the proper positions.

So what was moving the chromosomes?

When they repeated the experiment with a chemical that breaks down the other major type of cellular fibres, actin, the cells lost track of their chromosomes and the new cells had unequal amounts of genetic material. This condition, called aneuploidy, is thought to be a major cause of miscarriages and some types of birth defects.

Lénárt spent 18 months optimizing an imaging technology, with help from collaborators at the German Cancer Research Center (DKFZ), to visualize the delicate actin fibres before he could confirm the group’s fundamental breakthrough. He observed a network of filamentous actin forming in the region where the nuclear membrane breaks down. This network acts as a fishnet to gather all the chromosomes together and drag them close to the short microtubules. Only then, when the chromosomes are close enough, can the microtubules latch on and pull half of them outside the cell.

The implications for this pioneering work are clear. Starfish oocytes have many similarities to those of other animals, including humans. Because this mechanism is essential to prevent chromosome loss before fertilization, advances in this field could help to explain the causes of pregnancy loss and birth defects in humans.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>