Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Modification of program enables predicition of gene transcription


A modification to an "ace" gene prediction program now enables scientists to predict the very beginnings of gene transcription start sites and where the first splice occurs thereby defining the first exon of the gene.

The modification to the gene prediction software TWINSCAN is called N-SCAN. Michael Brent, Ph.D. professor of computer science at Washington University in St. Louis, together with Samuel S. Gross, then an undergraduate at Washington University, and Randall H. Brown, Ph.D., a research scientist, report their results in the May 2005 issue of Genome Research. N-SCAN has proven to be the best program available at finding both the transcription start site (TSS) and the complete first exon in both the human and fruit fly genomes.

The addition of N-SCAN to TWINSCAN now provides genomics researchers the wherewithal to find and predict both the protein sequences produced by genes and their untranslated regions. Researchers in recent years have grown increasingly enthusiastic about the significance of untranslated regions. By understanding the functions of these regions, scientists expect to understand more about gene regulation — how genes get turned on and off, the ignition system of our DNA, if you will.

To make the proteins that are the basic micro-machines of life, a region of the genome is copied, or "transcribed," to form a molecule called messenger RNA (mRNA). Some segments of the mRNA are then discarded, and the retained segments are spliced together. Geneticists have traditionally assumed that transcription starts within a few hundred bases of the protein-coding region. However, for nearly 40 percent of known human genes, transcription starts long before the beginning of the protein-coding region. Most of this extra-long untranslated region is then discarded by splicing the 5’ untranslated region (UTR). All present gene finding systems — except for N-SCAN — either ignore the UTR splice sites or incorrectly incorporate them into some protein-coding segment, making gene prediction a none-too-sure industry.

"We’ve found that when we add the spliced untranslated regions to our system, we not only get good predictions for UTRs but also improved predictions of the protein-coding region of the gene. By correctly identifying UTRs, we can avoid labeling them incorrectly as part of the protein-coding region," said Brent, who, with various colleagues, developed both TWINSCAN and N-SCAN. "It’s important to know these two areas. Some of the signals that regulate transcription reside right near the transcription site. There is a huge amount of biology to be discovered there, and the appreciation of this area is growing daily."

While genomics researchers 15 years ago paid little attention to parts of the genome outside the coding regions, they have discovered some strange functions in UTR that have provoked second and third thoughts.

For instance, it recently was discovered that huntingtin, a gene associated with Huntington’s disease, has a second protein segment encoded upstream of the main one. This protein in the so-called untranslated region is involved in regulating the gene.

Running the modified TWINSCAN, on both the human and fruit fly genomes, Brent and colleagues predicted about 25,000 transcription-start sites, compared with a known 6,000.

"In the human genome, we found many extra exons on genes that were already known, or in some cases, spliced UTRs on genes that weren’t even known to exist before," Brent said.

The system takes advantage of the scarcity of the CG sequence, finding so-called CpG "islands" known to be more common near the transcription-start site. It also has a knack for recognizing sequences that indicate splice sites.

Over the past two years, TWINSCAN has been finding and predicting genes in numerous genomes that other gene prediction systems have missed. The addition of N-SCAN to the handy system — it scans two genomes simultaneously, with potential to scan three or more — strengthens it for predicting both coding and non-coding DNA.

"Like any multiple choice question, if you can learn something about one of the choices, it helps you with the other one," Brent said. "By making this integrated model that looks for both kinds of exons in both parts of the gene, we’re able to convert a blind guessing game to a multiple choice question - is it a UTR exon or a protein-coding exon? These kinds of questions are easier to answer now."

Tony Fitzpatrick | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>