Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metals take a walk


Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes ’walking’ a path to their destinations

Do metal complexes casually stroll around certain molecules prior to chemical reactions? Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes "walking" a path to their destinations.

Many types of chemical reactions and new materials depend on the integration of metals with organic (carbon based) molecules. Metals, for instance, assist in transformations of chemical compounds, while materials with many kinds of unique properties often incorporate metals into the molecular structure.

The phenomenon dubbed "ring walking," for the idea that these metal complexes might move from point to point around organic molecules (which contain the familiar, six-sided carbon rings), had been deduced from experimentation. But proving that ring walking takes place prior to a chemical transformation had not been successfully attempted before. Dr. Milko van der Boom thought that understanding the route the metal takes as it moves from one place to another on the molecule might give chemists a powerful tool for understanding and controlling chemical reactions. Olena Zenkina, a student who came from Ukraine for a summer research program and ended up staying to pursue a Ph.D. in Dr. van der Boom’s group, used Nuclear Magnetic Resonance (NMR) to track the movements of the platinum complexes. They were able to determine how these complexes moved in several steps around the structure of fairly simple organic molecules by undergoing weak molecular interactions at certain junctures. The walking stopped upon arrival at the point on the organic molecule where the chemical reaction occurs. The results of their experiment were confirmed in a computer simulation carried out by the group of Prof. Gershom (Jan) Martin, also of the Organic Chemistry Department. Van der Boom and Zenkina are now conducting research into various aspects of ring-walking. They want to know, for instance, how fast, and how far metals can walk. In addition, they have taken the first steps toward controlling the direction a metal takes in its walk around the molecule. In contrast to today’s approach to chemical transformations, which often involves custom designing sophisticated molecules, learning to direct the routes of metal complexes on the way to chemical reactions might provide a simple and effective alternative.

Dr. Milko van der Boom’s research is supported by the Henri Gutwirth Fund for Research ; ITEK, Israel; the Helen and Martin Kimmel Center for Molecular Design; and Sir Harry A.S. Djanogly, CBE, UK. Dr. Van Der Boom is the incumbent of the Dewey D. Stone and Harry Levine Career Development Chair.

Alex Smith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>