Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metals take a walk

13.07.2005


Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes ’walking’ a path to their destinations

Do metal complexes casually stroll around certain molecules prior to chemical reactions? Scientists in the Organic Chemistry Department of the Weizmann Institute of Science have caught a glimpse of platinum-based complexes "walking" a path to their destinations.

Many types of chemical reactions and new materials depend on the integration of metals with organic (carbon based) molecules. Metals, for instance, assist in transformations of chemical compounds, while materials with many kinds of unique properties often incorporate metals into the molecular structure.



The phenomenon dubbed "ring walking," for the idea that these metal complexes might move from point to point around organic molecules (which contain the familiar, six-sided carbon rings), had been deduced from experimentation. But proving that ring walking takes place prior to a chemical transformation had not been successfully attempted before. Dr. Milko van der Boom thought that understanding the route the metal takes as it moves from one place to another on the molecule might give chemists a powerful tool for understanding and controlling chemical reactions. Olena Zenkina, a student who came from Ukraine for a summer research program and ended up staying to pursue a Ph.D. in Dr. van der Boom’s group, used Nuclear Magnetic Resonance (NMR) to track the movements of the platinum complexes. They were able to determine how these complexes moved in several steps around the structure of fairly simple organic molecules by undergoing weak molecular interactions at certain junctures. The walking stopped upon arrival at the point on the organic molecule where the chemical reaction occurs. The results of their experiment were confirmed in a computer simulation carried out by the group of Prof. Gershom (Jan) Martin, also of the Organic Chemistry Department. Van der Boom and Zenkina are now conducting research into various aspects of ring-walking. They want to know, for instance, how fast, and how far metals can walk. In addition, they have taken the first steps toward controlling the direction a metal takes in its walk around the molecule. In contrast to today’s approach to chemical transformations, which often involves custom designing sophisticated molecules, learning to direct the routes of metal complexes on the way to chemical reactions might provide a simple and effective alternative.

Dr. Milko van der Boom’s research is supported by the Henri Gutwirth Fund for Research ; ITEK, Israel; the Helen and Martin Kimmel Center for Molecular Design; and Sir Harry A.S. Djanogly, CBE, UK. Dr. Van Der Boom is the incumbent of the Dewey D. Stone and Harry Levine Career Development Chair.

Alex Smith | EurekAlert!
Further information:
http://www.jgordonassociates.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>