Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ballet unravels, links proteins so cell can direct own movement

12.07.2005


A protein called vinculin moves cylinder-like fingers to form a hand to which an arm extended by a protein partner called alpha-actinin can bind, according to St. Jude researchers



As a cell moves forward, physical stress on its skeleton triggers molecular fingers and arms to grasp each other in reinforcing links that stabilize the skeleton, according to images produced by investigators at St. Jude Children’s Research Hospital.

The images show how a protein called alpha-actinin partly unravels its structure to free an internal molecular "arm" that reaches out to another protein, called vinculin. This triggers vinculin to partly unravel as well, freeing several molecular "fingers" that assume a shape that allows alpha-actinin to bind to its partner.


The researchers used a technique called X-ray crystallography to create these images, which help explain how alpha-actinin recruits vinculin to help it brace the cell’s skeleton during the physically stressful process of cell movement. A report on this work, scheduled for the July 15 issue of Molecular and Cellular Biology, appears in the prepublication online issue.

The discovery is important because without vinculin to reinforce its skeleton, the cell would move rapidly and randomly, making purposeful motion impossible, the researchers said. That means cells could not migrate properly in the developing embryo to take up their final positions, leaving the embryo to wither and die; yet the ability to move purposefully also helps individual cancer cells break away from a tumor and spread to other parts of the body, a process called metastasis. Therefore, discovering how cells direct their movements could help researchers better understand how embryos develop and how some cancers spread.

The cell’s skeleton is a network of long rows of a protein called actin linked together by molecules of alpha-actinin. This configuration gives the skeleton a network structure in which many rows of actin are held together in a grid, somewhat like a checkerboard. Along the edge of the skeleton, near the cell membrane, the alpha-actinin molecules do double duty. They not only hold together rows of actin, but they also bind to proteins called integrins.

Integrins are long molecules that pierce the membrane, leaving one end inside the cell and the other end firmly attached to the outside surface along which the cell is moving, according to Tina Izard, Ph.D., an associate member of Hematology-Oncology at St. Jude and the paper’s senior author. Integrin’s outside end is like a foot that is planted firmly on the ground but does not move, Izard said. Alpha-actinin molecules bound to the skeleton also bind to the end of integrin that is inside the cell. When the cell moves, stress on the "foot" part of the integrin outside the cell is transmitted into the cell to the other end of integrin. From there, the stress shifts to the alpha-actinin molecules that are also bound to the actin rods of the skeleton.

"Each time the moving cell grabs hold of the surface along which it is moving, the skeleton must be reinforced to withstand the stress," Izard said. "This is like dragging yourself along the floor by placing the palms of your hands down and letting the rest of your body flow forward. In the cell, that sort of stress could destroy the link between alpha-actinin and actin molecules and destabilize the cell’s skeleton."

Such stress could pull alpha-actinin off the actin, according to Philippe Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Biochemistry and the paper’s first author. Instead, the stress on alpha-actinin causes it to unravel its structure slightly and extend its arm to vinculin, he said. This triggers vinculin to unravel part of its own structure and extend its fingers. While the flexible fingers on the "head" of vinculin offer a hand for alpha-actinin to bind to, the sturdier back part of vinculin binds to the actin as well. This reinforces alpha-actinin’s hold on the skeleton.

"It’s this ability of vinculin to reinforce the connections between alpha-actinin molecules and the actin rods of the skeleton that keeps the skeleton stiff enough to withstand the stress of cell movement," Bois said.

This work is a continuation of an earlier project in which Izard and Bois demonstrated the structure of vinculin and showed that it changes its shape by moving individual "cylinders" making up its head, much like the movement of fingers on a hand. The authors named this process "helical bundle conversion" and noted that this conversion was key to cellular movement. A report on that work appeared in the January 8, 2004, issue of Nature.

Other authors include Robert A. Borgon (St. Jude) and Clemens Vonrhein (Global Phasing Limited, Cambridge, UK).

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>