Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ballet unravels, links proteins so cell can direct own movement

12.07.2005


A protein called vinculin moves cylinder-like fingers to form a hand to which an arm extended by a protein partner called alpha-actinin can bind, according to St. Jude researchers



As a cell moves forward, physical stress on its skeleton triggers molecular fingers and arms to grasp each other in reinforcing links that stabilize the skeleton, according to images produced by investigators at St. Jude Children’s Research Hospital.

The images show how a protein called alpha-actinin partly unravels its structure to free an internal molecular "arm" that reaches out to another protein, called vinculin. This triggers vinculin to partly unravel as well, freeing several molecular "fingers" that assume a shape that allows alpha-actinin to bind to its partner.


The researchers used a technique called X-ray crystallography to create these images, which help explain how alpha-actinin recruits vinculin to help it brace the cell’s skeleton during the physically stressful process of cell movement. A report on this work, scheduled for the July 15 issue of Molecular and Cellular Biology, appears in the prepublication online issue.

The discovery is important because without vinculin to reinforce its skeleton, the cell would move rapidly and randomly, making purposeful motion impossible, the researchers said. That means cells could not migrate properly in the developing embryo to take up their final positions, leaving the embryo to wither and die; yet the ability to move purposefully also helps individual cancer cells break away from a tumor and spread to other parts of the body, a process called metastasis. Therefore, discovering how cells direct their movements could help researchers better understand how embryos develop and how some cancers spread.

The cell’s skeleton is a network of long rows of a protein called actin linked together by molecules of alpha-actinin. This configuration gives the skeleton a network structure in which many rows of actin are held together in a grid, somewhat like a checkerboard. Along the edge of the skeleton, near the cell membrane, the alpha-actinin molecules do double duty. They not only hold together rows of actin, but they also bind to proteins called integrins.

Integrins are long molecules that pierce the membrane, leaving one end inside the cell and the other end firmly attached to the outside surface along which the cell is moving, according to Tina Izard, Ph.D., an associate member of Hematology-Oncology at St. Jude and the paper’s senior author. Integrin’s outside end is like a foot that is planted firmly on the ground but does not move, Izard said. Alpha-actinin molecules bound to the skeleton also bind to the end of integrin that is inside the cell. When the cell moves, stress on the "foot" part of the integrin outside the cell is transmitted into the cell to the other end of integrin. From there, the stress shifts to the alpha-actinin molecules that are also bound to the actin rods of the skeleton.

"Each time the moving cell grabs hold of the surface along which it is moving, the skeleton must be reinforced to withstand the stress," Izard said. "This is like dragging yourself along the floor by placing the palms of your hands down and letting the rest of your body flow forward. In the cell, that sort of stress could destroy the link between alpha-actinin and actin molecules and destabilize the cell’s skeleton."

Such stress could pull alpha-actinin off the actin, according to Philippe Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Biochemistry and the paper’s first author. Instead, the stress on alpha-actinin causes it to unravel its structure slightly and extend its arm to vinculin, he said. This triggers vinculin to unravel part of its own structure and extend its fingers. While the flexible fingers on the "head" of vinculin offer a hand for alpha-actinin to bind to, the sturdier back part of vinculin binds to the actin as well. This reinforces alpha-actinin’s hold on the skeleton.

"It’s this ability of vinculin to reinforce the connections between alpha-actinin molecules and the actin rods of the skeleton that keeps the skeleton stiff enough to withstand the stress of cell movement," Bois said.

This work is a continuation of an earlier project in which Izard and Bois demonstrated the structure of vinculin and showed that it changes its shape by moving individual "cylinders" making up its head, much like the movement of fingers on a hand. The authors named this process "helical bundle conversion" and noted that this conversion was key to cellular movement. A report on that work appeared in the January 8, 2004, issue of Nature.

Other authors include Robert A. Borgon (St. Jude) and Clemens Vonrhein (Global Phasing Limited, Cambridge, UK).

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>