Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ballet unravels, links proteins so cell can direct own movement

12.07.2005


A protein called vinculin moves cylinder-like fingers to form a hand to which an arm extended by a protein partner called alpha-actinin can bind, according to St. Jude researchers



As a cell moves forward, physical stress on its skeleton triggers molecular fingers and arms to grasp each other in reinforcing links that stabilize the skeleton, according to images produced by investigators at St. Jude Children’s Research Hospital.

The images show how a protein called alpha-actinin partly unravels its structure to free an internal molecular "arm" that reaches out to another protein, called vinculin. This triggers vinculin to partly unravel as well, freeing several molecular "fingers" that assume a shape that allows alpha-actinin to bind to its partner.


The researchers used a technique called X-ray crystallography to create these images, which help explain how alpha-actinin recruits vinculin to help it brace the cell’s skeleton during the physically stressful process of cell movement. A report on this work, scheduled for the July 15 issue of Molecular and Cellular Biology, appears in the prepublication online issue.

The discovery is important because without vinculin to reinforce its skeleton, the cell would move rapidly and randomly, making purposeful motion impossible, the researchers said. That means cells could not migrate properly in the developing embryo to take up their final positions, leaving the embryo to wither and die; yet the ability to move purposefully also helps individual cancer cells break away from a tumor and spread to other parts of the body, a process called metastasis. Therefore, discovering how cells direct their movements could help researchers better understand how embryos develop and how some cancers spread.

The cell’s skeleton is a network of long rows of a protein called actin linked together by molecules of alpha-actinin. This configuration gives the skeleton a network structure in which many rows of actin are held together in a grid, somewhat like a checkerboard. Along the edge of the skeleton, near the cell membrane, the alpha-actinin molecules do double duty. They not only hold together rows of actin, but they also bind to proteins called integrins.

Integrins are long molecules that pierce the membrane, leaving one end inside the cell and the other end firmly attached to the outside surface along which the cell is moving, according to Tina Izard, Ph.D., an associate member of Hematology-Oncology at St. Jude and the paper’s senior author. Integrin’s outside end is like a foot that is planted firmly on the ground but does not move, Izard said. Alpha-actinin molecules bound to the skeleton also bind to the end of integrin that is inside the cell. When the cell moves, stress on the "foot" part of the integrin outside the cell is transmitted into the cell to the other end of integrin. From there, the stress shifts to the alpha-actinin molecules that are also bound to the actin rods of the skeleton.

"Each time the moving cell grabs hold of the surface along which it is moving, the skeleton must be reinforced to withstand the stress," Izard said. "This is like dragging yourself along the floor by placing the palms of your hands down and letting the rest of your body flow forward. In the cell, that sort of stress could destroy the link between alpha-actinin and actin molecules and destabilize the cell’s skeleton."

Such stress could pull alpha-actinin off the actin, according to Philippe Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Biochemistry and the paper’s first author. Instead, the stress on alpha-actinin causes it to unravel its structure slightly and extend its arm to vinculin, he said. This triggers vinculin to unravel part of its own structure and extend its fingers. While the flexible fingers on the "head" of vinculin offer a hand for alpha-actinin to bind to, the sturdier back part of vinculin binds to the actin as well. This reinforces alpha-actinin’s hold on the skeleton.

"It’s this ability of vinculin to reinforce the connections between alpha-actinin molecules and the actin rods of the skeleton that keeps the skeleton stiff enough to withstand the stress of cell movement," Bois said.

This work is a continuation of an earlier project in which Izard and Bois demonstrated the structure of vinculin and showed that it changes its shape by moving individual "cylinders" making up its head, much like the movement of fingers on a hand. The authors named this process "helical bundle conversion" and noted that this conversion was key to cellular movement. A report on that work appeared in the January 8, 2004, issue of Nature.

Other authors include Robert A. Borgon (St. Jude) and Clemens Vonrhein (Global Phasing Limited, Cambridge, UK).

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>