Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular ballet unravels, links proteins so cell can direct own movement

12.07.2005


A protein called vinculin moves cylinder-like fingers to form a hand to which an arm extended by a protein partner called alpha-actinin can bind, according to St. Jude researchers



As a cell moves forward, physical stress on its skeleton triggers molecular fingers and arms to grasp each other in reinforcing links that stabilize the skeleton, according to images produced by investigators at St. Jude Children’s Research Hospital.

The images show how a protein called alpha-actinin partly unravels its structure to free an internal molecular "arm" that reaches out to another protein, called vinculin. This triggers vinculin to partly unravel as well, freeing several molecular "fingers" that assume a shape that allows alpha-actinin to bind to its partner.


The researchers used a technique called X-ray crystallography to create these images, which help explain how alpha-actinin recruits vinculin to help it brace the cell’s skeleton during the physically stressful process of cell movement. A report on this work, scheduled for the July 15 issue of Molecular and Cellular Biology, appears in the prepublication online issue.

The discovery is important because without vinculin to reinforce its skeleton, the cell would move rapidly and randomly, making purposeful motion impossible, the researchers said. That means cells could not migrate properly in the developing embryo to take up their final positions, leaving the embryo to wither and die; yet the ability to move purposefully also helps individual cancer cells break away from a tumor and spread to other parts of the body, a process called metastasis. Therefore, discovering how cells direct their movements could help researchers better understand how embryos develop and how some cancers spread.

The cell’s skeleton is a network of long rows of a protein called actin linked together by molecules of alpha-actinin. This configuration gives the skeleton a network structure in which many rows of actin are held together in a grid, somewhat like a checkerboard. Along the edge of the skeleton, near the cell membrane, the alpha-actinin molecules do double duty. They not only hold together rows of actin, but they also bind to proteins called integrins.

Integrins are long molecules that pierce the membrane, leaving one end inside the cell and the other end firmly attached to the outside surface along which the cell is moving, according to Tina Izard, Ph.D., an associate member of Hematology-Oncology at St. Jude and the paper’s senior author. Integrin’s outside end is like a foot that is planted firmly on the ground but does not move, Izard said. Alpha-actinin molecules bound to the skeleton also bind to the end of integrin that is inside the cell. When the cell moves, stress on the "foot" part of the integrin outside the cell is transmitted into the cell to the other end of integrin. From there, the stress shifts to the alpha-actinin molecules that are also bound to the actin rods of the skeleton.

"Each time the moving cell grabs hold of the surface along which it is moving, the skeleton must be reinforced to withstand the stress," Izard said. "This is like dragging yourself along the floor by placing the palms of your hands down and letting the rest of your body flow forward. In the cell, that sort of stress could destroy the link between alpha-actinin and actin molecules and destabilize the cell’s skeleton."

Such stress could pull alpha-actinin off the actin, according to Philippe Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Biochemistry and the paper’s first author. Instead, the stress on alpha-actinin causes it to unravel its structure slightly and extend its arm to vinculin, he said. This triggers vinculin to unravel part of its own structure and extend its fingers. While the flexible fingers on the "head" of vinculin offer a hand for alpha-actinin to bind to, the sturdier back part of vinculin binds to the actin as well. This reinforces alpha-actinin’s hold on the skeleton.

"It’s this ability of vinculin to reinforce the connections between alpha-actinin molecules and the actin rods of the skeleton that keeps the skeleton stiff enough to withstand the stress of cell movement," Bois said.

This work is a continuation of an earlier project in which Izard and Bois demonstrated the structure of vinculin and showed that it changes its shape by moving individual "cylinders" making up its head, much like the movement of fingers on a hand. The authors named this process "helical bundle conversion" and noted that this conversion was key to cellular movement. A report on that work appeared in the January 8, 2004, issue of Nature.

Other authors include Robert A. Borgon (St. Jude) and Clemens Vonrhein (Global Phasing Limited, Cambridge, UK).

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>