Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could lead to new types of Alzheimer’s drugs

12.07.2005


A ground-breaking new research approach to understanding the cellular processes of Alzheimer’s and other degenerative diseases has revealed a promising pathway to the development of new types of drugs for these diseases.



The discovery, made in the laboratory of Ratnesh Lal, research scientist in the Neuroscience Research Institute (NRI) at the University of California, Santa Barbara, is published in this week’s online issue of the Proceedings of the National Academy of Sciences (PNAS).

The research describes a new way of understanding the degeneration of brain cells in patients with Alzheimer’s, Huntington’s, and Parkinson’s diseases, as well as other degenerative diseases. Misfolded proteins in the cell membrane, and subsequent changes in the electrical properties of cells, provide the explanation for the cell degeneration. Specific three-dimensional structures of misfolded proteins are embedded in the cell membrane.


"It has long been thought that amyloid plaque, which has been studied for 30 years, was the cause of Alzheimer’s disease," said Lal. "Plaque isn’t the cause." He explained that the fibers of plaque are too large to directly affect small cells.

The answers may come from small globs of misshapen, misfolded proteins that make well-defined holes in cell membranes and disrupt their electrical activity, according to the study.

Amyloid protein is a sticky, globular substance created when normal cellular proteins become twisted and contorted into abnormal shapes. While amyloid formation has been associated with diseases like Alzheimer’s, Parkinson’s, and Huntington’s, scientists have puzzled over whether and how it actually kills cells and causes disease. To gain insight into this mysterious process, Lal and his research team examined the three-dimensional structure of several different proteins associated with these diseases. The researchers observed that all of the proteins folded into structures resembling ion channels, or pores within cell membranes. These pores control the electrical properties of the cell by regulating the flow of charged particles (ions) such as calcium.

When embedded into artificial membranes, the misfolded proteins were able to produce electrical currents, confirming their similarity to ion channels. Since abnormal ion balance is known to disrupt cell function and cause degeneration, these results provide proof of a possible mechanism by which amyloid formation may lead to the cellular destruction seen in these neurodegenerative diseases.

"These ion channels could serve as a model system for designing preventive and therapeutic drugs," said Lal. "You don’t need large aggregates of these amyloid proteins, the plaque, to have this disruption. Rather, small aggregates, when in contact with membrane, form ion channels and allow passage of ion current. By controlling activity and designing specific drugs to regulate these channels, we might be able to prevent and/or treat various diseases related to the amyloids."

These findings provide a major piece of the puzzle about the underlying protein misfolding associated with these degenerative diseases. Besides the diseases already mentioned, other degenerative diseases that also result from misfolded proteins include cystic fibrosis, type II diabetes, cerebrovascular dementia, arthritis, tuberculosis, as well as British and Danish famial dementias.

The researchers used atomic force microscopy (AFM) to view the ion channels. By using the AFM they were able to view these "bio-nano" molecules. The AFM allows for a look at these very small channels, which would be very difficult if not impossible to see in their native, cell-like environment with electron microscopy.

In addition to Lal, the authors of this path-breaking paper are: Arjan Quist and Ivo Doudevski of the NRI at UCSB; Han Lin of the University of Pittsburgh; Rushana Azimova and Bruce Kagan of the University of California, Los Angeles; and Douglas Ng, Blas Frangione, and Jorge Ghiso of New York University.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>