Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could lead to new types of Alzheimer’s drugs

12.07.2005


A ground-breaking new research approach to understanding the cellular processes of Alzheimer’s and other degenerative diseases has revealed a promising pathway to the development of new types of drugs for these diseases.



The discovery, made in the laboratory of Ratnesh Lal, research scientist in the Neuroscience Research Institute (NRI) at the University of California, Santa Barbara, is published in this week’s online issue of the Proceedings of the National Academy of Sciences (PNAS).

The research describes a new way of understanding the degeneration of brain cells in patients with Alzheimer’s, Huntington’s, and Parkinson’s diseases, as well as other degenerative diseases. Misfolded proteins in the cell membrane, and subsequent changes in the electrical properties of cells, provide the explanation for the cell degeneration. Specific three-dimensional structures of misfolded proteins are embedded in the cell membrane.


"It has long been thought that amyloid plaque, which has been studied for 30 years, was the cause of Alzheimer’s disease," said Lal. "Plaque isn’t the cause." He explained that the fibers of plaque are too large to directly affect small cells.

The answers may come from small globs of misshapen, misfolded proteins that make well-defined holes in cell membranes and disrupt their electrical activity, according to the study.

Amyloid protein is a sticky, globular substance created when normal cellular proteins become twisted and contorted into abnormal shapes. While amyloid formation has been associated with diseases like Alzheimer’s, Parkinson’s, and Huntington’s, scientists have puzzled over whether and how it actually kills cells and causes disease. To gain insight into this mysterious process, Lal and his research team examined the three-dimensional structure of several different proteins associated with these diseases. The researchers observed that all of the proteins folded into structures resembling ion channels, or pores within cell membranes. These pores control the electrical properties of the cell by regulating the flow of charged particles (ions) such as calcium.

When embedded into artificial membranes, the misfolded proteins were able to produce electrical currents, confirming their similarity to ion channels. Since abnormal ion balance is known to disrupt cell function and cause degeneration, these results provide proof of a possible mechanism by which amyloid formation may lead to the cellular destruction seen in these neurodegenerative diseases.

"These ion channels could serve as a model system for designing preventive and therapeutic drugs," said Lal. "You don’t need large aggregates of these amyloid proteins, the plaque, to have this disruption. Rather, small aggregates, when in contact with membrane, form ion channels and allow passage of ion current. By controlling activity and designing specific drugs to regulate these channels, we might be able to prevent and/or treat various diseases related to the amyloids."

These findings provide a major piece of the puzzle about the underlying protein misfolding associated with these degenerative diseases. Besides the diseases already mentioned, other degenerative diseases that also result from misfolded proteins include cystic fibrosis, type II diabetes, cerebrovascular dementia, arthritis, tuberculosis, as well as British and Danish famial dementias.

The researchers used atomic force microscopy (AFM) to view the ion channels. By using the AFM they were able to view these "bio-nano" molecules. The AFM allows for a look at these very small channels, which would be very difficult if not impossible to see in their native, cell-like environment with electron microscopy.

In addition to Lal, the authors of this path-breaking paper are: Arjan Quist and Ivo Doudevski of the NRI at UCSB; Han Lin of the University of Pittsburgh; Rushana Azimova and Bruce Kagan of the University of California, Los Angeles; and Douglas Ng, Blas Frangione, and Jorge Ghiso of New York University.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>