Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huntington’s cure in flies lays groundwork for broader treatment approaches

12.07.2005


MADISON-Boosting levels of two critical proteins that normally shut down during Huntington’s disease, researchers at the University of Wisconsin-Madison and the Cold Spring Harbor Laboratory have cured fruit flies of the genetic, neurodegenerative condition.



Forms of the same proteins-known in short form as CREB and HSP-70--exist in all cells, including those of humans.

The study results, published online today by the Proceedings of the National Academy of Sciences, were a "logical finding" because of a growing body of work in the area, says senior author Jerry Yin, a UW-Madison molecular geneticist. Scientists previously knew, for example, that hiking the activity of either CREB or HSP-70 lessened symptoms in mice or flies with Huntington’s disease.


Completely reversing a disease by targeting a combination of proteins or genetic pathways, however, reflects the growing need to embrace a broader treatment paradigm in the realm of genetic disorders, says Yin.

In working with a disorder such as Fragile X Syndrome, for example, conventional therapies might focus all their efforts on repairing the genetic pathways that cause neurons to go awry. Meanwhile, "the defective gene is not just in one type of tissue," says Yin. "And we are not yet sensitive to detecting the defects in those other tissues."

Rather than focusing treatment strategies on single genetic pathways, then, Yin believes a promising alternative might be to simultaneously target a cocktail of gene-induced activities - all of which are set in motion, for example, by a single faulty gene.

Yin has long worked in the area of "triplet expansion" diseases such as Huntington’s and Fragile X, in which genes go haywire due to a coding defect. His collaborators on the recent fruit fly work include, among others, lead author Kanae Iijima-Ando of the Cold Spring Harbor Laboratory and UW-Madison assistant scientist Eric Drier.

Working with the simplistic genetics of flies is certainly a long way from the complex realities of humans, Yin says, particularly for diseases that can be attributed to dozens and even hundreds of abnormal gene functions.

Yet in some cases, it might turn out that gene pathways stemming from different genes converge at some point, into one common "superhighway," says Yin. "If you know that, you can do something in the superhighway part," he says.

Researchers studying epilepsy, for example, have discovered that at least 20 genes have a role to play in the onset of seizures, and dozens more may be involved. Though many might argue for directing research dollars to the continued search for epilepsy genes, Yin believes funding agencies should now consider investing in the search for these "superhighways" of gene convergence.

That search might be long and tedious, he adds, but it’s most certainly worth a shot. "I think the history of scientific discovery teaches us that we can’t predict anything. So we just have to play all the cards we can possibly play."

Jerry Yin | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>