Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Golden armor

12.07.2005


UCSD scientist’s discovery suggest new way to fight antibiotic-resistant staphylococcus infections



Researchers at the University of California, San Diego School of Medicine and Children’s Hospital and Health Center, San Diego have discovered that "Staph" bacteria use a protective golden armor to ward off the immune system, a finding with the potential to lead to new treatments for serious infections now increasingly resistant to standard antibiotics.

The research, which is featured on the cover of the July 17, 2005 issue of The Journal of Experimental Medicine, focused on the major human pathogen Staphylococcus aureus and the characteristic yellow-orange color for which it is named ("aureus" is Latin for "golden").


Among the deadliest of all disease-causing organisms, "Staph" is the leading cause of human infections in the skin and soft tissues, bones and joints, abscesses and normal heart valves. Staph especially flourishes in the hospital setting, producing bloodstream and surgical wound infections. The spread of antibiotic resistant strains of Staph, referred to as methicillin-resistant Staphylococcus aureus or MRSA, has reached epidemic proportions and poses a major threat to the public health.

The UCSD team proved for the first time that the golden pigment that coats the surface of Staph is not just for decoration; rather, the molecules that give the bacteria its golden hue also help it resist killing by neutrophils, white blood cells with a front line role in immune defense against invading microbes.

Staph’s coloration reflects the production of molecules called carotenoids, similar to those present in carrots and other colorful vegetables and fruits. Dietary carotenoids have long been touted for their antioxidant properties with hope that they could slow aging or fight off cancer. The scientists found that pathogenic Staph took advantage of the antioxidant effects of its carotenoid pigment to extend its own life, by inactivating chemicals deployed by neutrophils that are lethal to most bacteria. The UCSD team used a molecular genetic approach for their studies, knocking out the genes for carotenoid synthesis to generate a mutant strain of Staph that appeared white in color instead of the normal gold.

"We found that the nonpigmented Staph mutant became much more susceptible to oxidants such as hydrogen peroxide and singlet oxygen produced by neutrophils," said George Liu, M.D., Ph.D., a research fellow in the UCSD department of pediatrics who spearheaded the studies. "Without its golden pigment, the Staph lost its ability to survive in human neutrophils or blood, and could no longer form an abscess when injected into the skin of experimental mice."

The investigators proved that the antioxidant effects of the Staph pigment were the key factor in virulence by repeating experiments in blood from a human patient with chronic granulomatous disease (CGD), an inherited disorder in which neutrophils cannot produce oxidants and infections are common, as well as in mice engineered to possess the same genetic mutation. Without the oxidant assault, the ability of the nonpigmented strain to resist neutrophil killing and produce disease was equal to the golden Staph.

The power of the antioxidant pigment in promoting bacterial survival was further established extending the protective properties to a different bacteria. Pigment-producing genes of Staph were cloned into a normally colorless strain of Streptococcus ("Strep") bacteria that then turned yellow in color. The Strep expressing the golden carotenoid pigment became more resistant to oxidant and neutrophil killing, and produced larger ulcers when injected into the skin of normal mice.

"The discovery of the critical role played by golden pigment in protecting against infection provides an novel target for treatment of serious Staph infections including those produced by antibiotic-resistant MRSA," said senior author Victor Nizet, M.D., UCSD associate professor of pediatrics and an infectious diseases physician at Children’s Hospital, San Diego. "Instead of attempting to kill the bacteria directly with standard antibiotics, a treatment strategy to inhibit the Staph pigment would disarm the pathogen, making it susceptible to clearance by our normal immune defenses"

Leslie Franz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>