Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Golden armor

12.07.2005


UCSD scientist’s discovery suggest new way to fight antibiotic-resistant staphylococcus infections



Researchers at the University of California, San Diego School of Medicine and Children’s Hospital and Health Center, San Diego have discovered that "Staph" bacteria use a protective golden armor to ward off the immune system, a finding with the potential to lead to new treatments for serious infections now increasingly resistant to standard antibiotics.

The research, which is featured on the cover of the July 17, 2005 issue of The Journal of Experimental Medicine, focused on the major human pathogen Staphylococcus aureus and the characteristic yellow-orange color for which it is named ("aureus" is Latin for "golden").


Among the deadliest of all disease-causing organisms, "Staph" is the leading cause of human infections in the skin and soft tissues, bones and joints, abscesses and normal heart valves. Staph especially flourishes in the hospital setting, producing bloodstream and surgical wound infections. The spread of antibiotic resistant strains of Staph, referred to as methicillin-resistant Staphylococcus aureus or MRSA, has reached epidemic proportions and poses a major threat to the public health.

The UCSD team proved for the first time that the golden pigment that coats the surface of Staph is not just for decoration; rather, the molecules that give the bacteria its golden hue also help it resist killing by neutrophils, white blood cells with a front line role in immune defense against invading microbes.

Staph’s coloration reflects the production of molecules called carotenoids, similar to those present in carrots and other colorful vegetables and fruits. Dietary carotenoids have long been touted for their antioxidant properties with hope that they could slow aging or fight off cancer. The scientists found that pathogenic Staph took advantage of the antioxidant effects of its carotenoid pigment to extend its own life, by inactivating chemicals deployed by neutrophils that are lethal to most bacteria. The UCSD team used a molecular genetic approach for their studies, knocking out the genes for carotenoid synthesis to generate a mutant strain of Staph that appeared white in color instead of the normal gold.

"We found that the nonpigmented Staph mutant became much more susceptible to oxidants such as hydrogen peroxide and singlet oxygen produced by neutrophils," said George Liu, M.D., Ph.D., a research fellow in the UCSD department of pediatrics who spearheaded the studies. "Without its golden pigment, the Staph lost its ability to survive in human neutrophils or blood, and could no longer form an abscess when injected into the skin of experimental mice."

The investigators proved that the antioxidant effects of the Staph pigment were the key factor in virulence by repeating experiments in blood from a human patient with chronic granulomatous disease (CGD), an inherited disorder in which neutrophils cannot produce oxidants and infections are common, as well as in mice engineered to possess the same genetic mutation. Without the oxidant assault, the ability of the nonpigmented strain to resist neutrophil killing and produce disease was equal to the golden Staph.

The power of the antioxidant pigment in promoting bacterial survival was further established extending the protective properties to a different bacteria. Pigment-producing genes of Staph were cloned into a normally colorless strain of Streptococcus ("Strep") bacteria that then turned yellow in color. The Strep expressing the golden carotenoid pigment became more resistant to oxidant and neutrophil killing, and produced larger ulcers when injected into the skin of normal mice.

"The discovery of the critical role played by golden pigment in protecting against infection provides an novel target for treatment of serious Staph infections including those produced by antibiotic-resistant MRSA," said senior author Victor Nizet, M.D., UCSD associate professor of pediatrics and an infectious diseases physician at Children’s Hospital, San Diego. "Instead of attempting to kill the bacteria directly with standard antibiotics, a treatment strategy to inhibit the Staph pigment would disarm the pathogen, making it susceptible to clearance by our normal immune defenses"

Leslie Franz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>