Colorful bacteria more dangerous

A new study in the July 18 issue of The Journal of Experimental Medicine shows that gold-colored bacteria are more harmful than their unpigmented relatives. A group of scientists led by Victor Nizet (UCSD, San Diego, CA) have discovered that the molecules that give certain bugs their color also help them resist attack by immune cells called neutrophils.

Scientists and clinicians have known for many years that gold-colored strains of a bacterium called Staphylococcus aureus tend to be cause more disease than colorless strains. The color of these bugs comes from anti-oxidant molecules called carotenoids. Similar molecules also give carrots their color and are often touted for their ability to boost the immune system.

Nizet and colleagues now show that these pigmented molecules help S. aureus defuse damaging molecules that are produced by neutrophils in order to kill the bacteria. When the researchers removed the carotenoids from the bacteria, they became more vulnerable to immune attack. Nizet suggests that drugs that inhibit carotenoid synthesis might be useful for treating S. aureus infections, which can quickly develop resistance to traditional antibiotics.

Media Contact

Nickey Henry EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors