Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers show how cancer-preventing foods work

11.07.2005


Researchers at the University of Illinois at Chicago are unraveling the biochemical mechanism by which functional foods combat cancer.



"Compounds like sulforaphane in broccoli and resveratrol in wine have been shown to prevent cancer," said Andrew Mesecar, associate professor of pharmaceutical biotechnology in the UIC College of Pharmacy. "They do that by signaling our bodies to ramp up the production of proteins capable of preventing damage to our DNA.

"We now have a good idea how that signal works."


The findings are published in this week’s Early Edition of the Proceedings of the National Academy of Sciences.

Two key proteins, Keap1 and Nrf2, are involved in spurring the defense against cancer when disease-preventing foods are ingested, according to Mesecar and post-doctoral researcher Aimee Eggler. Keap1, the sensor protein, detects the presence of dietary compounds like sulforaphane when they link with its cysteine residues, one of the amino acids that make up proteins. Keap1 binds to Nrf2, the messenger that turns on the genes for the protective proteins, averting DNA damage.

"Earlier studies in mice suggested that natural cancer-preventing compounds worked by severing the tie between Keap1 and Nrf2, freeing Nrf2 to take action," Mesecar said. "But the signaling doesn’t happen this way in humans."

The scientists found that in humans the connection between the two proteins is not broken.

What’s important, the researchers said, is the modification of cysteines in Keap1. They found that one particular cysteine was among the most likely to be altered in the interaction with cancer-preventing compounds.

That finding corresponded with results from other researchers. As a result, the scientists are proposing that the alteration of just this one amino acid in Keap1 is the critical step that spurs higher levels of the messenger Nrf2 and, consequently, increased production of the protective proteins.

Keap1 is a promising new target for drugs to fight many different kinds of cancer, Mesecar said.

The American Cancer Society estimates that there will be over 1.3 million new cases of cancer in 2005, and roughly half of these individuals will not survive their disease, Mesecar noted. "One way of preventing cancer may be to eat certain foods rich in cancer-preventing compounds. An alternative is identifying how these compounds work and replicating their modes of action with drugs."

Mesecar’s and Eggler’s main collaborators in the study were Richard van Breemen, professor of medicinal chemistry and pharmacognosy in the UIC College of Pharmacy, and Guowen Liu, a graduate student at UIC. John Pezzuto, professor of medicinal chemistry and molecular pharmacology at Purdue University, is also an author of the study.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>