Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers show how cancer-preventing foods work

11.07.2005


Researchers at the University of Illinois at Chicago are unraveling the biochemical mechanism by which functional foods combat cancer.



"Compounds like sulforaphane in broccoli and resveratrol in wine have been shown to prevent cancer," said Andrew Mesecar, associate professor of pharmaceutical biotechnology in the UIC College of Pharmacy. "They do that by signaling our bodies to ramp up the production of proteins capable of preventing damage to our DNA.

"We now have a good idea how that signal works."


The findings are published in this week’s Early Edition of the Proceedings of the National Academy of Sciences.

Two key proteins, Keap1 and Nrf2, are involved in spurring the defense against cancer when disease-preventing foods are ingested, according to Mesecar and post-doctoral researcher Aimee Eggler. Keap1, the sensor protein, detects the presence of dietary compounds like sulforaphane when they link with its cysteine residues, one of the amino acids that make up proteins. Keap1 binds to Nrf2, the messenger that turns on the genes for the protective proteins, averting DNA damage.

"Earlier studies in mice suggested that natural cancer-preventing compounds worked by severing the tie between Keap1 and Nrf2, freeing Nrf2 to take action," Mesecar said. "But the signaling doesn’t happen this way in humans."

The scientists found that in humans the connection between the two proteins is not broken.

What’s important, the researchers said, is the modification of cysteines in Keap1. They found that one particular cysteine was among the most likely to be altered in the interaction with cancer-preventing compounds.

That finding corresponded with results from other researchers. As a result, the scientists are proposing that the alteration of just this one amino acid in Keap1 is the critical step that spurs higher levels of the messenger Nrf2 and, consequently, increased production of the protective proteins.

Keap1 is a promising new target for drugs to fight many different kinds of cancer, Mesecar said.

The American Cancer Society estimates that there will be over 1.3 million new cases of cancer in 2005, and roughly half of these individuals will not survive their disease, Mesecar noted. "One way of preventing cancer may be to eat certain foods rich in cancer-preventing compounds. An alternative is identifying how these compounds work and replicating their modes of action with drugs."

Mesecar’s and Eggler’s main collaborators in the study were Richard van Breemen, professor of medicinal chemistry and pharmacognosy in the UIC College of Pharmacy, and Guowen Liu, a graduate student at UIC. John Pezzuto, professor of medicinal chemistry and molecular pharmacology at Purdue University, is also an author of the study.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>