Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retina adapts to seek the unexpected, ignore the commonplace

08.07.2005


Novel cues drive animal behavior; ’our thirst for novelty begins in the eye itself,’ scientists say



Researchers at Harvard University have found evidence that the retina actively seeks novel features in the visual environment, dynamically adjusting its processing in order to seek the unusual while ignoring the commonplace. The scientists report in this week’s issue of the journal Nature on their finding that this principle of novelty-detection operates in many visual environments.

"Apparently our thirst for novelty begins in the eye itself," says Markus Meister, the Jeff C. Tarr Professor of Molecular and Cellular Biology in Harvard’s Faculty of Arts and Sciences. "Our eyes report the visual world to the brain, but not very faithfully. Instead, the retina creates a cartoonist’s sketch of the visual scene, highlighting key features while suppressing the less interesting regions."


These findings provide evidence that the ultimate goal of the visual system is not simply to construct internally an exact reproduction of the external world, Meister and his colleagues write in Nature. Rather, the system seeks to extract from the onslaught of raw visual information the few bits of data that are relevant to behavior. This entails the discarding of signals that are less useful, and dynamic retinal adaptation provides a means of stripping from the visual stream predictable and therefore less newsworthy signals.

For example, Meister says, in visual environments such as forests or fields of grass with many vertical elements but only rare horizontal features, the retina adjusts to suppress the routine vertical features while highlighting the singular horizontal elements.

Meister and his co-authors examined neural signals in retinal ganglion cells, which convey visual images from the eye to the brain. These cells generally record local spatial differences and changes over time rather than faithful renditions of momentary scenes. Scientists had interpreted this as a form of predictive coding, a strategy shaped by the forces of evolution in adaptation to the average image structure of natural environments.

"Yet animals encounter many environments with visual statistics different from this hypothetical ’average’ scene," Meister says. "We have found that when this happens, the retina adjusts its processing dynamically: The spatio-temporal receptive fields of retinal ganglion cells change after a few seconds in a new environment. These changes are adaptive, improving predictive coding by enhancing the ability of these receptive fields to pick out unusual features."

While manipulating the visual scenes faced by salamanders and rabbits, Meister and colleagues recorded neural signals from the animals’ retinal ganglion cells, testing whether adaptation to a different environment altered the encoding of retinal signals. From the neural responses to novel stimuli, the researchers computed the sensitivity of individual ganglion cells to various scenes.

For most cells, sensitivity to a novel scene was greater than sensitivity to control scenes to which the animals had already been exposed, a gap that grew gradually in the seconds after introduction to a new environment. Because this adaptation occurred in both salamanders and rabbits, Meister concluded that it typifies retinal function in both amphibians and mammals, animals that differ greatly in ecology and physiology but share the challenge of adjusting to a variable visual environment.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>