Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular trigger for Huntington’s disease found

07.07.2005


Researchers have discovered a key regulatory molecule whose overactivation by the abnormal protein produced in Huntington’s disease (HD) causes the central pathologies of the disease. The abnormal HD protein activates the regulatory protein called p53, which in turn switches on a host of other genes. This abnormal gene activation damages the cells’ power plants, called the mitochondria, and kills brain cells.



The researchers also speculated that disturbances in p53 may also play a role in some forms of Parkinson’s disease and amyotrophic lateral sclerosis, or Lou Gehrig’s disease.

Ironically, p53 is the same regulatory protein that is inactivated in a large fraction of cancers. This inactivation allows abnormal cancer cells to escape the cell’s protective "suicide program" that would normally kill them. The researchers theorize that the lower incidence of cancer in HD patients could be caused by the protective effect of overactive p53.


In the July 7, 2005, issue of Neuron, Akira Sawa and colleagues at Johns Hopkins University School of Medicine reported experiments ranging from molecular studies in cultured brain cells to analysis of the brains of human HD patients that demonstrated the central role of p53 in the pathologies of HD.

Their studies with cell cultures showed that the abnormal HD protein selectively binds to p53 and increases its level in cells. They noted that the brains of patients with HD also show substantial increases in the p53 protein, with the highest levels in cases with the most extensive pathology.

The researchers’ experiments also revealed that this p53 increase causes an overactivation in the genes regulated by p53, which is called a "nuclear transcription factor" because it regulates the transcription of its target genes in cell nuclei.

In studies of cell cultures and of mice engineered to have HD, the researchers found that the p53 increase causes malfunctions in mitochondria. What’s more, they found that this p53 increase induced by the abnormal HD protein greatly increases cell death.

The researchers also found effects of the abnormality in p53 in whole animals. They found that deleting p53 suppresses damage to neurons in the eye of fruit flies engineered to have the abnormal HD protein. And in mice with the abnormal protein, knocking out p53 corrects behavioral abnormalities that the mice otherwise display. These behaviors include abnormal reflexes such as an inhibited startle response to loud noise, which is also present in human HD patients.

"In summary, our study establishes a specific role for p53 in HD," concluded Sawa and colleagues. "As p53 is a nuclear transcription factor that regulates various mitochondrial genes and insofar as mitochondrial dysfunction appears important in HD, our findings provide a molecular mechanism linking disturbances of nuclei and mitochondria in HD." Download PDF

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>