Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers test drug that could cut orthodontic treatment time in half

06.07.2005


Orthodontics takes first step toward biological control of tooth movement

In the first study of its kind, University of Florida researchers are testing the power of a natural human hormone to biochemically move teeth faster and less painfully during orthodontic treatment.

"Most of orthodontics has traditionally dealt with physics, the biomechanics of applying a force against a tooth to move it," said study investigator Timothy Wheeler, D.M.D., Ph.D., a professor and chairman of orthodontics at UF’s College of Dentistry. "Ours is the first study to use a naturally occurring hormone, recombinant human relaxin, to biochemically augment tooth movement and retention."



Relaxin is best known as the hormone that helps women’s pelvic ligaments stretch in preparation for giving birth. It does this by softening collagen and elastin in the tissues, loosening strong, cord-like fibers until they have the consistency of limp spaghetti noodles.

That ability prompted researchers to consider relaxin a possible way to accelerate tooth movement and prevent relapse, a condition where the tooth migrates back to its original position after braces are removed.

"You can imagine normal collagen and elastin fibers to be like rubber bands that attach to the tooth to hold it in place," said Wheeler. "Those tissue fibers resist the force of the orthodontic treatment applied to move the tooth, and, when that force is removed, say when the braces are taken off, the elasticity of the tissues springs the tooth back into position."

UF researchers will evaluate whether injecting relaxin into the gums will loosen the collagen and elastin fibers and reorganize them so teeth can move more freely into orthodontic alignment. Once the teeth have been moved, researchers will administer another injection of relaxin under the premise that it will further soften gum tissue fibers, preventing them from pulling teeth back into their original position.

The study will be the first of many to test the hormone as an orthodontic therapy, and it is hoped the drug could cut treatment time in half and eliminate the need for retainers after braces have been removed.

This may not help the more than 5 million Americans and Canadians the American Association of Orthodontists estimates currently wear braces, but if it’s shown to work it could bring a sigh of relief from those anticipating future tooth-torqueing orthodontic treatment and the aching teeth and throbbing gums that often go along with it.

The patent for the drug, which received the green light from the Food and Drug Administration last April for testing in human subjects, is owned by BAS Medical, a California-based company. BAS Medical is the sponsor of the UF study, which will establish safety and proof of principle on 40 people before a series of multicenter studies could begin testing the drug on hundreds worldwide.

Researchers won’t know which of the 40 subjects receive relaxin and which receive a placebo. One tooth in each subject will be targeted for movement, and, subjects will wear Invisalign braces for eight weeks to move the targeted tooth. At week eight, the aligners will be removed and the teeth evaluated for relapse every four weeks for six months. As a safety measure, the week four outcomes of the first 12 patients entered into the study will be evaluated before the remaining 28 begin treatment. All 40 subjects will have completed the protocol by early October.

Wheeler said researchers hope to determine whether the treatment could eliminate the need for patients to wear retainers to hold teeth in place after braces are removed. The issue of retention - a term used to indicate the tooth remains in the position to which it has been moved without relapse - is a crucial aspect of the study.

"Right now, retention is the biggest problem we have in orthodontics," Wheeler said. "I want to get completely away from retainers, which for most patients right now are a lifetime commitment."

When patients don’t wear retainers as prescribed, teeth gradually relapse, nullifying years of orthodontic treatment and expense. It is this lack of patient compliance that frustrates orthodontists worldwide.

"If the results of this study demonstrate enhancement of the rate of orthodontic tooth movement and better stability after treatment, it could be an exciting new method of increasing treatment acceptability while decreasing the need for compliance," said Robert Boyd, D.D.S., a professor and chairman of orthodontics at the University of the Pacific School of Dentistry. "Finishing orthodontic treatment without the usual regimen of lifetime use of retainers would greatly enhance the effectiveness and efficiency of current orthodontic treatment."

An important goal of future studies is to determine dosage and timing of drug delivery as well as delivery methods other than injection.

"This is the first step orthodontics has taken to deal with the biologic control of tooth movement, and what the final product will be is hard to tell at this point. Obviously, we want to make it easily available, easily delivered and as pain-free as possible," Wheeler said. "This initial proof of principle trial will help us define how to accomplish that."

Lindy McCollum-Brounley | EurekAlert!
Further information:
http://www.dental.ufl.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>