Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers test drug that could cut orthodontic treatment time in half

06.07.2005


Orthodontics takes first step toward biological control of tooth movement

In the first study of its kind, University of Florida researchers are testing the power of a natural human hormone to biochemically move teeth faster and less painfully during orthodontic treatment.

"Most of orthodontics has traditionally dealt with physics, the biomechanics of applying a force against a tooth to move it," said study investigator Timothy Wheeler, D.M.D., Ph.D., a professor and chairman of orthodontics at UF’s College of Dentistry. "Ours is the first study to use a naturally occurring hormone, recombinant human relaxin, to biochemically augment tooth movement and retention."



Relaxin is best known as the hormone that helps women’s pelvic ligaments stretch in preparation for giving birth. It does this by softening collagen and elastin in the tissues, loosening strong, cord-like fibers until they have the consistency of limp spaghetti noodles.

That ability prompted researchers to consider relaxin a possible way to accelerate tooth movement and prevent relapse, a condition where the tooth migrates back to its original position after braces are removed.

"You can imagine normal collagen and elastin fibers to be like rubber bands that attach to the tooth to hold it in place," said Wheeler. "Those tissue fibers resist the force of the orthodontic treatment applied to move the tooth, and, when that force is removed, say when the braces are taken off, the elasticity of the tissues springs the tooth back into position."

UF researchers will evaluate whether injecting relaxin into the gums will loosen the collagen and elastin fibers and reorganize them so teeth can move more freely into orthodontic alignment. Once the teeth have been moved, researchers will administer another injection of relaxin under the premise that it will further soften gum tissue fibers, preventing them from pulling teeth back into their original position.

The study will be the first of many to test the hormone as an orthodontic therapy, and it is hoped the drug could cut treatment time in half and eliminate the need for retainers after braces have been removed.

This may not help the more than 5 million Americans and Canadians the American Association of Orthodontists estimates currently wear braces, but if it’s shown to work it could bring a sigh of relief from those anticipating future tooth-torqueing orthodontic treatment and the aching teeth and throbbing gums that often go along with it.

The patent for the drug, which received the green light from the Food and Drug Administration last April for testing in human subjects, is owned by BAS Medical, a California-based company. BAS Medical is the sponsor of the UF study, which will establish safety and proof of principle on 40 people before a series of multicenter studies could begin testing the drug on hundreds worldwide.

Researchers won’t know which of the 40 subjects receive relaxin and which receive a placebo. One tooth in each subject will be targeted for movement, and, subjects will wear Invisalign braces for eight weeks to move the targeted tooth. At week eight, the aligners will be removed and the teeth evaluated for relapse every four weeks for six months. As a safety measure, the week four outcomes of the first 12 patients entered into the study will be evaluated before the remaining 28 begin treatment. All 40 subjects will have completed the protocol by early October.

Wheeler said researchers hope to determine whether the treatment could eliminate the need for patients to wear retainers to hold teeth in place after braces are removed. The issue of retention - a term used to indicate the tooth remains in the position to which it has been moved without relapse - is a crucial aspect of the study.

"Right now, retention is the biggest problem we have in orthodontics," Wheeler said. "I want to get completely away from retainers, which for most patients right now are a lifetime commitment."

When patients don’t wear retainers as prescribed, teeth gradually relapse, nullifying years of orthodontic treatment and expense. It is this lack of patient compliance that frustrates orthodontists worldwide.

"If the results of this study demonstrate enhancement of the rate of orthodontic tooth movement and better stability after treatment, it could be an exciting new method of increasing treatment acceptability while decreasing the need for compliance," said Robert Boyd, D.D.S., a professor and chairman of orthodontics at the University of the Pacific School of Dentistry. "Finishing orthodontic treatment without the usual regimen of lifetime use of retainers would greatly enhance the effectiveness and efficiency of current orthodontic treatment."

An important goal of future studies is to determine dosage and timing of drug delivery as well as delivery methods other than injection.

"This is the first step orthodontics has taken to deal with the biologic control of tooth movement, and what the final product will be is hard to tell at this point. Obviously, we want to make it easily available, easily delivered and as pain-free as possible," Wheeler said. "This initial proof of principle trial will help us define how to accomplish that."

Lindy McCollum-Brounley | EurekAlert!
Further information:
http://www.dental.ufl.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>