Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature publication reports key links between mechanisms of aging and metabolic disorders

05.07.2005


Obesity and diabetes seen as accelerated aging; research has broad implications in treating disease and new drug discovery



During the last decade researchers have made a number of important discoveries about the molecular mechanisms regulating aging. This research has suggested the exciting prospect that the rate of aging can be manipulated and slowed, leading to longer human lifespan. A major peer-reviewed article in the current issue of Nature Reviews Drug Discovery describes the intimate links between these pathways of aging and those of metabolic disease, such as type 2 diabetes and obesity. The authors describe how these insights open the door to novel classes of drugs which can be developed to not only treat diabetes and obesity, but also effectively slow the aging process and extend lifespan. These and other findings are reviewed in the article, "Aging and Metabolism: Drug Discovery Opportunities", authored by Elixir Pharmaceuticals’ researchers Drs. Rory Curtis, Bard J. Geesaman and Peter S. DiStefano and appearing in Nature Reviews Drug Discovery (July 2005, Vol. 4, No. 7).

John Kopchick, Ph.D., Goll-Ohio Eminent Scholar and Professor of Molecular Biology, Department of Biomedical Sciences, Konneker Research Center, Ohio University, commented, "This article provides an elegant and comprehensive survey of the essential connections between metabolic disease pathways and aging. The potential of this research is profound: Modulating these pathways may not only uncover yet unknown therapeutic targets and/or drugs to treat metabolic disease, but also has the potential to impact the progression of aging itself."


Summary of the article

Aging is a major risk factor for several major diseases including cancers, cardiovascular, metabolic and neurodegenerative diseases. Many of the genes discovered over the last decade that are known to affect lifespan belong to evolutionarily conserved biochemical pathways that are also intricately involved in the control of energy metabolism. Diabetes can be considered as an accelerated form of aging. Insulin resistance and visceral fat accumulation are culprits in the pathogenesis of metabolic disease and these factors predispose organisms to premature aging. Several of these gene products, i.e., the encoded proteins, represent good molecular targets for drug discovery for the major metabolic diseases (obesity, type 2 diabetes). The article provides a roadmap to identify drugs to treat and prevent metabolic diseases; biomarkers identified during the course of clinical trials with these drugs may lay the foundation for drugs that increase lifespan. Targeting the mechanisms of aging provides a novel means for discovering drugs to treat metabolic diseases as well as other important age-related diseases.

Pathways of Aging

Much research has focused on the role of insulin resistance in aging. According to the authors, "in situations where plentiful high-calorie food is combined with a sedentary existence, the pancreas increases insulin secretion above normal levels in order to dispose of sustained excess blood glucose which, over time, leads to the deposition of visceral fat." Two major effects result: Increased visceral fat initiates a metabolic cascade that impairs insulin signaling in the body, and greater levels of insulin cause visceral fat to secrete substances that reduce insulin sensitivity in tissues.

As the authors note, "Eventually, this feed-forward cycle leads to an altered metabolic state involving very high levels of insulin (hyperinsulinemia) induced by resistance to insulin, even under fasting conditions. This state triggers a constellation of related complications, collectively referred to as metabolic syndrome."

According to the Nature authors, many of the genes implicated in the modulation of lifespan are well-conserved from lower organisms right up through humans. In addition, these genes code for receptors enzymes and transporters, and are therefore suitable targets for drug development. These include: 1) the SIR2/SIRT class of deacetylases, known to increase lifespan when over-expressed in yeast and flies, 2) insulin/insulin-like growth factor receptor, which increases lifespan in worms and mice when deleted in certain tissues, 3) AMP kinase, an enzyme that acts as a fuel sensor and is a target of the anti-diabetic drug metformin, and 4) INDY (’I’m not dead yet’), a cell surface transporter known to increase lifespan in flies when mutated.

Dr. Kopchick stated, "The article by DiStefano et al. will stimulate a paradigm shift in our thinking about aging and age-related disorders. As pointed out by the authors, we are beginning to recognize that metabolic syndrome, in addition to being a precursor of serious diseases such as type 2 diabetes and cardiovascular disease, may be a sign of premature aging. For patients, this translates into the potential of a variety of novel drugs emerging from the science of aging, which then will be tested clinically in the treatment of metabolic diseases. What an exciting possibility!

In the United States, nearly twelve million people have type 2 diabetes and another 60+ million are obese. The numbers are growing dramatically and are expected to double over the next 25 years. In addition to the direct burdens (e.g. patient quality of life, economic) of these metabolic diseases, diabetes and obesity are also risk factors contributing to higher and earlier rates of a variety of life-threatening conditions such as cancer, cardiovascular disease and Alzheimer’s disease – all commonly referred to as diseases of aging.

Justin Jackson | EurekAlert!
Further information:
http://www.burnsmc.com
http://www.elixirpharm.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>