Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature publication reports key links between mechanisms of aging and metabolic disorders

05.07.2005


Obesity and diabetes seen as accelerated aging; research has broad implications in treating disease and new drug discovery



During the last decade researchers have made a number of important discoveries about the molecular mechanisms regulating aging. This research has suggested the exciting prospect that the rate of aging can be manipulated and slowed, leading to longer human lifespan. A major peer-reviewed article in the current issue of Nature Reviews Drug Discovery describes the intimate links between these pathways of aging and those of metabolic disease, such as type 2 diabetes and obesity. The authors describe how these insights open the door to novel classes of drugs which can be developed to not only treat diabetes and obesity, but also effectively slow the aging process and extend lifespan. These and other findings are reviewed in the article, "Aging and Metabolism: Drug Discovery Opportunities", authored by Elixir Pharmaceuticals’ researchers Drs. Rory Curtis, Bard J. Geesaman and Peter S. DiStefano and appearing in Nature Reviews Drug Discovery (July 2005, Vol. 4, No. 7).

John Kopchick, Ph.D., Goll-Ohio Eminent Scholar and Professor of Molecular Biology, Department of Biomedical Sciences, Konneker Research Center, Ohio University, commented, "This article provides an elegant and comprehensive survey of the essential connections between metabolic disease pathways and aging. The potential of this research is profound: Modulating these pathways may not only uncover yet unknown therapeutic targets and/or drugs to treat metabolic disease, but also has the potential to impact the progression of aging itself."


Summary of the article

Aging is a major risk factor for several major diseases including cancers, cardiovascular, metabolic and neurodegenerative diseases. Many of the genes discovered over the last decade that are known to affect lifespan belong to evolutionarily conserved biochemical pathways that are also intricately involved in the control of energy metabolism. Diabetes can be considered as an accelerated form of aging. Insulin resistance and visceral fat accumulation are culprits in the pathogenesis of metabolic disease and these factors predispose organisms to premature aging. Several of these gene products, i.e., the encoded proteins, represent good molecular targets for drug discovery for the major metabolic diseases (obesity, type 2 diabetes). The article provides a roadmap to identify drugs to treat and prevent metabolic diseases; biomarkers identified during the course of clinical trials with these drugs may lay the foundation for drugs that increase lifespan. Targeting the mechanisms of aging provides a novel means for discovering drugs to treat metabolic diseases as well as other important age-related diseases.

Pathways of Aging

Much research has focused on the role of insulin resistance in aging. According to the authors, "in situations where plentiful high-calorie food is combined with a sedentary existence, the pancreas increases insulin secretion above normal levels in order to dispose of sustained excess blood glucose which, over time, leads to the deposition of visceral fat." Two major effects result: Increased visceral fat initiates a metabolic cascade that impairs insulin signaling in the body, and greater levels of insulin cause visceral fat to secrete substances that reduce insulin sensitivity in tissues.

As the authors note, "Eventually, this feed-forward cycle leads to an altered metabolic state involving very high levels of insulin (hyperinsulinemia) induced by resistance to insulin, even under fasting conditions. This state triggers a constellation of related complications, collectively referred to as metabolic syndrome."

According to the Nature authors, many of the genes implicated in the modulation of lifespan are well-conserved from lower organisms right up through humans. In addition, these genes code for receptors enzymes and transporters, and are therefore suitable targets for drug development. These include: 1) the SIR2/SIRT class of deacetylases, known to increase lifespan when over-expressed in yeast and flies, 2) insulin/insulin-like growth factor receptor, which increases lifespan in worms and mice when deleted in certain tissues, 3) AMP kinase, an enzyme that acts as a fuel sensor and is a target of the anti-diabetic drug metformin, and 4) INDY (’I’m not dead yet’), a cell surface transporter known to increase lifespan in flies when mutated.

Dr. Kopchick stated, "The article by DiStefano et al. will stimulate a paradigm shift in our thinking about aging and age-related disorders. As pointed out by the authors, we are beginning to recognize that metabolic syndrome, in addition to being a precursor of serious diseases such as type 2 diabetes and cardiovascular disease, may be a sign of premature aging. For patients, this translates into the potential of a variety of novel drugs emerging from the science of aging, which then will be tested clinically in the treatment of metabolic diseases. What an exciting possibility!

In the United States, nearly twelve million people have type 2 diabetes and another 60+ million are obese. The numbers are growing dramatically and are expected to double over the next 25 years. In addition to the direct burdens (e.g. patient quality of life, economic) of these metabolic diseases, diabetes and obesity are also risk factors contributing to higher and earlier rates of a variety of life-threatening conditions such as cancer, cardiovascular disease and Alzheimer’s disease – all commonly referred to as diseases of aging.

Justin Jackson | EurekAlert!
Further information:
http://www.burnsmc.com
http://www.elixirpharm.com

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>