Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fish hear and make sounds at same time

04.07.2005


Cornell University researchers have learned how a common fish found along the West Coast can hum and hear outside sounds at the same time.


Photograph by Margaret Marchaterre, Department of Neurobiology and Behavior, Cornell University.
A male plainfin midshipman with his newly hatched embryos attached to the rocky substrate of his nest (top right). A graph of neural impulses over a period of a few milliseconds is superimposed over the photo. The yellow lines show nerve impulses that lead to vocal muscles and cue them to make noise. The sounds actually occur in the millisecond spaces between each yellow spike. As the sound takes place, the brain also sends an impulse to the fish’s ear (red spikes), which reduces sensitivity during intervals that coincide precisely with the noise. Copyright © Cornell UniversityClick



The study marks the first time that scientists have found a direct line of communication between the part of a vertebrate’s brain that controls the vocal muscle system and the part of the ear that hears sound. The researchers believe that understanding the auditory system of the plainfin midshipman fish (Porichthys notatus ) -- a 6- to 10-inch fish found along the coastline from Alaska to California -- will offer insights into how other vertebrates -- including humans -- hear.

The general pattern of connections between neurons in the auditory system is the same in all vertebrates, including mammals. While humans hear with the cochlea of the inner ear, the midshipman uses the sacculus, a part of the ear that in humans detects acceleration or linear movement.


Because the study indicates a relationship between the ear and the auditory and vocalization systems of the brain, it could help scientists understand some of the mechanisms that contribute to deafness.

"We’ve studied so many things about these fish, and I never cease to be amazed by how similar the operation of their nervous system is to that of mammals," said Andrew Bass, professor of neurobiology and behavior at Cornell, and an author of the study published in the June 22 issue of the Journal of Neuroscience. "You don’t need to study a mammal to understand what a mammal does."

The researchers found that as the fish’s brain signals vocal muscles to make sound, a number of synchronized actions take place. The ear and brain are cued to the exact timing of a self-generated sound, distinguishing it from outside sounds. Just prior to a voicing, the brain warns the ear it should become less sensitive.

When analyzed closely, the vocalizations can be broken down into a series of impulses separated in time by only milliseconds. The system is timed only to block out sound at the exact moment when the fish vocalizes, leaving the ear sensitive to outside noises during the millisecond gaps when the fish is silent. Once an impulse for vocalization ends, the brain decreases its messages to the ear, which in turn makes the ear more receptive to external sound again. In fact, for an instant following a vocalization, the ear may actually become more sensitive than it was prior to the voicing.

By better understanding these complex systems, the study offers new avenues for researchers to explore the causes of human deafness.

"Hearing loss is a major pathology that humans deal with," said Bass. "And we don’t understand that mechanism very well. Observing what these neurons do may offer insights into what leads to hearing deficits."

Only a few fish vocalize, but male plainfin midshipman fish hum to attract a mate or grunt when stressed. When courting, the midshipman hums continuously for up to two hours to attract a female, who may deposit up to 200 eggs, which the male fertilizes. The next night, the male hums again to attract a new mate. In one season, a successful male may end up fertilizing several thousand eggs.

During mating season, houseboat owners in San Francisco Bay have complained that their homes vibrate from the humming fish, which sound like a high-speed motor running underwater.

Co-author Matthew Weeg received his doctorate from Cornell and worked in Andrew Bass’s laboratory before recently becoming a lecturer at Colorado State University. The other co-author, Bruce Land, is a senior research associate in Cornell’s Department of Neurobiology and Behavior.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.news.cornell.edu/stories/July05/Bass.kr.html

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>