Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fish hear and make sounds at same time

04.07.2005


Cornell University researchers have learned how a common fish found along the West Coast can hum and hear outside sounds at the same time.


Photograph by Margaret Marchaterre, Department of Neurobiology and Behavior, Cornell University.
A male plainfin midshipman with his newly hatched embryos attached to the rocky substrate of his nest (top right). A graph of neural impulses over a period of a few milliseconds is superimposed over the photo. The yellow lines show nerve impulses that lead to vocal muscles and cue them to make noise. The sounds actually occur in the millisecond spaces between each yellow spike. As the sound takes place, the brain also sends an impulse to the fish’s ear (red spikes), which reduces sensitivity during intervals that coincide precisely with the noise. Copyright © Cornell UniversityClick



The study marks the first time that scientists have found a direct line of communication between the part of a vertebrate’s brain that controls the vocal muscle system and the part of the ear that hears sound. The researchers believe that understanding the auditory system of the plainfin midshipman fish (Porichthys notatus ) -- a 6- to 10-inch fish found along the coastline from Alaska to California -- will offer insights into how other vertebrates -- including humans -- hear.

The general pattern of connections between neurons in the auditory system is the same in all vertebrates, including mammals. While humans hear with the cochlea of the inner ear, the midshipman uses the sacculus, a part of the ear that in humans detects acceleration or linear movement.


Because the study indicates a relationship between the ear and the auditory and vocalization systems of the brain, it could help scientists understand some of the mechanisms that contribute to deafness.

"We’ve studied so many things about these fish, and I never cease to be amazed by how similar the operation of their nervous system is to that of mammals," said Andrew Bass, professor of neurobiology and behavior at Cornell, and an author of the study published in the June 22 issue of the Journal of Neuroscience. "You don’t need to study a mammal to understand what a mammal does."

The researchers found that as the fish’s brain signals vocal muscles to make sound, a number of synchronized actions take place. The ear and brain are cued to the exact timing of a self-generated sound, distinguishing it from outside sounds. Just prior to a voicing, the brain warns the ear it should become less sensitive.

When analyzed closely, the vocalizations can be broken down into a series of impulses separated in time by only milliseconds. The system is timed only to block out sound at the exact moment when the fish vocalizes, leaving the ear sensitive to outside noises during the millisecond gaps when the fish is silent. Once an impulse for vocalization ends, the brain decreases its messages to the ear, which in turn makes the ear more receptive to external sound again. In fact, for an instant following a vocalization, the ear may actually become more sensitive than it was prior to the voicing.

By better understanding these complex systems, the study offers new avenues for researchers to explore the causes of human deafness.

"Hearing loss is a major pathology that humans deal with," said Bass. "And we don’t understand that mechanism very well. Observing what these neurons do may offer insights into what leads to hearing deficits."

Only a few fish vocalize, but male plainfin midshipman fish hum to attract a mate or grunt when stressed. When courting, the midshipman hums continuously for up to two hours to attract a female, who may deposit up to 200 eggs, which the male fertilizes. The next night, the male hums again to attract a new mate. In one season, a successful male may end up fertilizing several thousand eggs.

During mating season, houseboat owners in San Francisco Bay have complained that their homes vibrate from the humming fish, which sound like a high-speed motor running underwater.

Co-author Matthew Weeg received his doctorate from Cornell and worked in Andrew Bass’s laboratory before recently becoming a lecturer at Colorado State University. The other co-author, Bruce Land, is a senior research associate in Cornell’s Department of Neurobiology and Behavior.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.news.cornell.edu/stories/July05/Bass.kr.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>