Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stolen gene allows insect virus to enter cells

04.07.2005


A gene enabling an insect virus to enter new cells was likely stolen from a host cell and adapted for the virus’s use, researchers at Boyce Thompson Institute (BTI) at Cornell University report.



Virologists have long thought of baculoviruses, a group of viruses that can liquefy their insect hosts in a matter of days but don’t induce so much as a sneeze in mammals, as potential pesticides. But the viruses would require tweaking to be effective since they kill insects more slowly than chemical insecticides. Studying baculoviruses also yields insights into general viral behavior. The current study examined how baculoviruses took the evolutionary leap needed to become the nasty bugs they are today.

In the study, reported in the July 1 issue of the Journal of Virology, BTI researchers Gary Blissard and Oliver Lung investigated whether a fruit fly gene, called an f gene, had originally moved from an insect to a virus or the other way around. (Retroviruses, such as HIV, insert their own genes into their hosts’ DNA in order to replicate, and remnants of these invaders can be passed to descendants.) In viruses, an f gene codes for a fusion (F) protein, which enables the virus to penetrate the host cell’s membrane and infect it. Scientists had shown that some other viral genes were probably copied from host cells, but the origin of so-called fusion proteins, like F, has remained a mystery.


"The gigantic step was when the Drosophila melanogaster [fruit fly] genome was published," Blissard says. "The first thing was to ask whether the gene was turned on or not, to validate whether it’s a bona fide gene."

Blissard and Lung found messenger RNA (mRNA) copies of the gene in fruit fly cells, as well as F proteins--both products unlikely to arise if f were a piece of "junk DNA" left over from a long-departed retrovirus. The researchers then looked for evidence that the fruit fly regulates the f gene, switching it on and off as needed. Indeed, they found that the f gene stays quiet until the third and final stage of a maggot’s development, then begins to produce F proteins, which persist into adulthood. "f seems to be developmentally regulated, like a lot of Drosophila genes," says Blissard. Exactly what role the F protein plays in fruit flies remains to be answered.

At some point, perhaps after retroviruses had sprinkled host genomes with multiple copies of the f gene, a baculovirus picked it up through recombination. Unlike retroviruses, baculoviruses don’t insert their genes into their hosts’ genomes. They do steal genes, however, by mixing host DNA with their own. "The way they generate diversity in their genome is by recombination," Blissard says.

No matter how the original f gene moved from the fruit fly into viruses, it had to change a lot to win its current starring role in infectivity, Blissard says. He and Lung found that while viral F proteins naturally migrate to the surface of a host cell, F proteins native to the cell appear to stay on the inside. "Membrane fusion goes on all over the place inside the cell," Blissard says. "But fusion in cells is regulated by fairly large complexes of proteins. Viruses can accomplish membrane fusion with a one-protein machine." The F in fruit flies may not even be a fusion protein.

If the F protein is so important, how did baculoviruses get along without it? These viruses actually generate two types of infectious particles, Blissard explains: one type specialized to infect gut cells, and another that spreads infection in other parts of the insect. The latter type uses F to enter cells. An ancestor of today’s baculoviruses "might have just existed as a diarrheal-type virus, reproducing itself at a low level in the gut, letting the host survive," Blissard hypothesizes. "Picking up the f gene may have caused a radical change in the pathology of this virus, because a virus that co-exists nicely with its host will function a lot differently than one that’s trying to use all the tissues of the animal." In other words, it might have been a host’s own gene that turned baculoviruses into the lean, mean killing machines they are today.

The study was funded by the National Institutes of Health and the Boyce Thompson Institute for Plant Research.

Shawna Williams | EurekAlert!
Further information:
http://www.cornell.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>