Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stolen gene allows insect virus to enter cells


A gene enabling an insect virus to enter new cells was likely stolen from a host cell and adapted for the virus’s use, researchers at Boyce Thompson Institute (BTI) at Cornell University report.

Virologists have long thought of baculoviruses, a group of viruses that can liquefy their insect hosts in a matter of days but don’t induce so much as a sneeze in mammals, as potential pesticides. But the viruses would require tweaking to be effective since they kill insects more slowly than chemical insecticides. Studying baculoviruses also yields insights into general viral behavior. The current study examined how baculoviruses took the evolutionary leap needed to become the nasty bugs they are today.

In the study, reported in the July 1 issue of the Journal of Virology, BTI researchers Gary Blissard and Oliver Lung investigated whether a fruit fly gene, called an f gene, had originally moved from an insect to a virus or the other way around. (Retroviruses, such as HIV, insert their own genes into their hosts’ DNA in order to replicate, and remnants of these invaders can be passed to descendants.) In viruses, an f gene codes for a fusion (F) protein, which enables the virus to penetrate the host cell’s membrane and infect it. Scientists had shown that some other viral genes were probably copied from host cells, but the origin of so-called fusion proteins, like F, has remained a mystery.

"The gigantic step was when the Drosophila melanogaster [fruit fly] genome was published," Blissard says. "The first thing was to ask whether the gene was turned on or not, to validate whether it’s a bona fide gene."

Blissard and Lung found messenger RNA (mRNA) copies of the gene in fruit fly cells, as well as F proteins--both products unlikely to arise if f were a piece of "junk DNA" left over from a long-departed retrovirus. The researchers then looked for evidence that the fruit fly regulates the f gene, switching it on and off as needed. Indeed, they found that the f gene stays quiet until the third and final stage of a maggot’s development, then begins to produce F proteins, which persist into adulthood. "f seems to be developmentally regulated, like a lot of Drosophila genes," says Blissard. Exactly what role the F protein plays in fruit flies remains to be answered.

At some point, perhaps after retroviruses had sprinkled host genomes with multiple copies of the f gene, a baculovirus picked it up through recombination. Unlike retroviruses, baculoviruses don’t insert their genes into their hosts’ genomes. They do steal genes, however, by mixing host DNA with their own. "The way they generate diversity in their genome is by recombination," Blissard says.

No matter how the original f gene moved from the fruit fly into viruses, it had to change a lot to win its current starring role in infectivity, Blissard says. He and Lung found that while viral F proteins naturally migrate to the surface of a host cell, F proteins native to the cell appear to stay on the inside. "Membrane fusion goes on all over the place inside the cell," Blissard says. "But fusion in cells is regulated by fairly large complexes of proteins. Viruses can accomplish membrane fusion with a one-protein machine." The F in fruit flies may not even be a fusion protein.

If the F protein is so important, how did baculoviruses get along without it? These viruses actually generate two types of infectious particles, Blissard explains: one type specialized to infect gut cells, and another that spreads infection in other parts of the insect. The latter type uses F to enter cells. An ancestor of today’s baculoviruses "might have just existed as a diarrheal-type virus, reproducing itself at a low level in the gut, letting the host survive," Blissard hypothesizes. "Picking up the f gene may have caused a radical change in the pathology of this virus, because a virus that co-exists nicely with its host will function a lot differently than one that’s trying to use all the tissues of the animal." In other words, it might have been a host’s own gene that turned baculoviruses into the lean, mean killing machines they are today.

The study was funded by the National Institutes of Health and the Boyce Thompson Institute for Plant Research.

Shawna Williams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>