Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal research suggests new treatment target for epilepsy

01.07.2005


New research suggests novel treatment targets for the most common form of childhood epilepsy – with the potential to have fewer side effects than traditional therapy. The findings from Wake Forest University School of Medicine are reported today in the July issue of the Journal of Neurophysiology.



Through studies in animals, the researchers learned more about the possible brain pathways involved in absence, or petit mal, seizures and tested a drug that revealed a potential new target for blocking seizures before they spread.

"Many current therapies act on the entire nervous system and can have such side effects as sleep disruptions, dizziness and increased risk of developmental side effects," said Georgia Alexander, who with Dwayne Godwin, Ph.D., co-authored the new study. "Because this treatment blocks the pathway that may cause the spread of seizures, it could be more effective and have fewer side effects."


Absence seizures, which are most common in children between 6 and 12, get their name because during the seizure the child seems to be temporarily unconscious of his or her surroundings. Although they last only a few seconds, the seizures can occur hundreds of times a day and can dramatically impact learning and development.

Doctors don’t know exactly what causes the seizures, but a prevalent theory is that an abnormal electrical discharge originates in the cerebral cortex, the part of the brain that controls thinking and feeling, and travels to the thalamus, a part of the brain that controls consciousness and certain brain rhythms. The abnormal rhythmic discharges that result may then spread to other parts of the brain. Other types of seizures may also spread this way, including Lennox-Gastaut seizures, a severe form of childhood epilepsy that is often resistant to treatment.

"We know that the cortex communicates with the thalamus continuously, and current theories suggest that when the ’conversation’ gets too loud, seizures can occur," said Alexander. "We wanted to see if there was a way to calm the dialog."

In studying this possible pathway of seizures, Alexander made an important finding about its organization. It was already known that cells in the thalamus communicate with cells in the cortex by releasing the neurotransmitter glutamate. The glutamate travels across the gap -- creating a pathway for cell-to-cell communication.

Alexander and Godwin were the first to show that in addition to releasing glutamate, thalamus cells also have a special type of glutamate receptor that acts almost as a braking system – slowing the release of glutamate when there is high-intensity brain activity associated with a seizure.

"It’s like the gas and brake pedals of your car, "said Godwin, associate professor of neurobiology and anatomy and the senior researcher on the project. "Glutamate is important for normal communication in the brain, but sometimes it’s necessary to put on the brakes in order to preserve normal function. This receptor appears to slow down the rate at which glutamate is released across the synaptic gap, and may protect the cells from becoming overexcited."

Alexander hypothesizes that in epilepsy patients, the protective receptors may not function well or that glutamate production may be abnormal. A treatment that targets these protective glutamate receptors has the potential to block the pathway involved in seizures, with the added benefit of allowing normal communication to continue.

"If this research leads to drugs that can target these newly discovered receptors, it would be an important advance in therapy," said William L. Bell, M.D., a specialist in epilepsy at Wake Forest University Baptist Medical Center.

Godwin explained that design of improved drugs to target the receptors wouldn’t be a cure, but would short-circuit the type of abnormal activity that results in seizures.

In this research, the scientists studied the pathway by simulating seizure-related activity within brain circuits. They will continue the research by studying animals that are genetically predisposed to epilepsy.

Shannon Koontz | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>