Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal research suggests new treatment target for epilepsy

01.07.2005


New research suggests novel treatment targets for the most common form of childhood epilepsy – with the potential to have fewer side effects than traditional therapy. The findings from Wake Forest University School of Medicine are reported today in the July issue of the Journal of Neurophysiology.



Through studies in animals, the researchers learned more about the possible brain pathways involved in absence, or petit mal, seizures and tested a drug that revealed a potential new target for blocking seizures before they spread.

"Many current therapies act on the entire nervous system and can have such side effects as sleep disruptions, dizziness and increased risk of developmental side effects," said Georgia Alexander, who with Dwayne Godwin, Ph.D., co-authored the new study. "Because this treatment blocks the pathway that may cause the spread of seizures, it could be more effective and have fewer side effects."


Absence seizures, which are most common in children between 6 and 12, get their name because during the seizure the child seems to be temporarily unconscious of his or her surroundings. Although they last only a few seconds, the seizures can occur hundreds of times a day and can dramatically impact learning and development.

Doctors don’t know exactly what causes the seizures, but a prevalent theory is that an abnormal electrical discharge originates in the cerebral cortex, the part of the brain that controls thinking and feeling, and travels to the thalamus, a part of the brain that controls consciousness and certain brain rhythms. The abnormal rhythmic discharges that result may then spread to other parts of the brain. Other types of seizures may also spread this way, including Lennox-Gastaut seizures, a severe form of childhood epilepsy that is often resistant to treatment.

"We know that the cortex communicates with the thalamus continuously, and current theories suggest that when the ’conversation’ gets too loud, seizures can occur," said Alexander. "We wanted to see if there was a way to calm the dialog."

In studying this possible pathway of seizures, Alexander made an important finding about its organization. It was already known that cells in the thalamus communicate with cells in the cortex by releasing the neurotransmitter glutamate. The glutamate travels across the gap -- creating a pathway for cell-to-cell communication.

Alexander and Godwin were the first to show that in addition to releasing glutamate, thalamus cells also have a special type of glutamate receptor that acts almost as a braking system – slowing the release of glutamate when there is high-intensity brain activity associated with a seizure.

"It’s like the gas and brake pedals of your car, "said Godwin, associate professor of neurobiology and anatomy and the senior researcher on the project. "Glutamate is important for normal communication in the brain, but sometimes it’s necessary to put on the brakes in order to preserve normal function. This receptor appears to slow down the rate at which glutamate is released across the synaptic gap, and may protect the cells from becoming overexcited."

Alexander hypothesizes that in epilepsy patients, the protective receptors may not function well or that glutamate production may be abnormal. A treatment that targets these protective glutamate receptors has the potential to block the pathway involved in seizures, with the added benefit of allowing normal communication to continue.

"If this research leads to drugs that can target these newly discovered receptors, it would be an important advance in therapy," said William L. Bell, M.D., a specialist in epilepsy at Wake Forest University Baptist Medical Center.

Godwin explained that design of improved drugs to target the receptors wouldn’t be a cure, but would short-circuit the type of abnormal activity that results in seizures.

In this research, the scientists studied the pathway by simulating seizure-related activity within brain circuits. They will continue the research by studying animals that are genetically predisposed to epilepsy.

Shannon Koontz | EurekAlert!
Further information:
http://www.wfubmc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>