Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU’s Center for Comparative Functional Genomics helps to unravel the function of microRNAS

01.07.2005


MicroRNAs are a recently discovered large class of small, non-coding genes. Each animal genome contains hundreds of these genes, which have been shown to regulate the expression of protein coding genes by binding to partially complementary sites in messenger RNAs. However, little is known about the biological function of these tiny genes, which are encoded in a string of 21 to 24 DNA bases.



In a series of four high-profile papers in Nature, Nature Genetics, Developmental Biology, and PloS Computational Biology published over the past 15 months, researchers at New York University’s Center for Comparative Functional Genomics have shed light on the function and evolution of microRNA across a wide set of genomes. Their newest findings appear in the inaugural issue of Public Library of Science’s journal, PloS Computational Biology.

This study, headed by NYU Assistant Biology Professor Nikolaus Rajewsky, included researchers Dominic Grün, Yi-Lu Wang, and David Langenberger, and Research Assistant Professor Kristin Gunsalus, all at NYU’s Center for Comparative Functional Genomics. By comparing seven recently sequenced fly species, they found that thousands of genes in the genome of a laboratory model organism--the fruit fly--are likely to be regulated by microRNAs.


The researchers could also predict a specific biological function for 70 percent of all of these microRNAs. The predictions in the study are publicly available at pictar.bio.nyu.edu/. The paper also shows that microRNAs that are conserved between flies and mammals are likely to target the same proportion of genes in each species, although the number of conserved regulatory relationships is relatively small.

These findings hint at a significantly larger role for microRNAs during evolution. Evolutionary changes in which genes are targeted by certain microRNAs could thus help to explain differences between species, implicating that microRNAs could be part of genes that drive organismal diversity. In particular, one microRNA was shown to have many more targets in flies than in mammals, and this microRNA was predicted to contribute to the regulation of fly oogenesis, a process that is highly different between flies and mammals.

The paper may be obtained at compbiol.plosjournals.org/

In carrying out the study, the Rajewsky group developed "PicTar," a new algorithm for the identification of microRNA target sites in the genome (published in Nature Genetics, spring 2005). The PicTar algorithm was based on a paper by Rajewsky, who also holds an affiliated appointment at NYU’s Courant Institute of Mathematical Sciences, and his collaborator Nicholas Socci published in Developmental Biology in 2004, where they discovered key components of microRNA--target site recognition. When applying PicTar to seven vertebrate genomes, their Nature Genetics study found that each microRNA regulates, on average, 200 different human transcripts and that multiple microRNAs can coordinate their activities to regulate a specific target genes. Altogether, they showed that 20 to 30 percent of all vertebrate genes are likely to be regulated by microRNAS. The paper contains detailed genome-wide target predictions for all human microRNAs as well as tissue-specific predictions. Several predictions were validated experimentally by Rajewsky’s collaborators at Rockefeller University. The findings demonstrate an unforeseen, staggering complexity of gene regulation executed by microRNAs on a genome-wide level.

Finally, collaborating with researchers at Rockefeller University, Lund University (Sweden), and Oxford University, Rajewsky recently helped to unravel the function of a microRNA gene that was shown to regulate the secretion of insulin in the pancreas. The findings, which for the first time defined a physiological function for a mammalian microRNA gene, were published last fall in Nature. In the study, predicted gene targets for miR-375 were verified experimentally, thereby making an important contribution for understanding miR-375 function in regulating insulin secretion, and potentially opening the door for new ways to treat diabetes.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>