Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers find key to rice blast fungus

01.07.2005


Efforts to halt a fungus that deprives about 60 million people a year of food have led Purdue University scientists to discover the molecular machinery that enables the pathogen to blast its way into rice plants.



The fungus, Magnaporthe grisea, which is known as rice blast fungus, is the most deadly of the pathogens that attack rice, reducing yields by as much as 75 percent in infected areas. Learning how the fungus tricks rice’s natural defenses against pathogens to penetrate the plant is an important part of controlling the disease, said Jin-Rong Xu, a Purdue molecular biologist.

Xu, Xinhua Zhao, Yangseon Kim and Gyungsoon Park, all of Purdue’s Department of Botany and Plant Pathology, found that an enzyme is a key player in coordinating the fungus’ attack. The enzyme, called a pathogenicity mitogen-activated protein (MAP) kinase, flips the switch that starts the cellular communication necessary to launch the fungal invasion that kills rice plants or causes loss of grain.


"We found that this MAP kinase controls the penetration process, which is the beginning of a signal transduction pathway," said Xu, who also was a member of an international research team that published the rice blast fungus genome in the April 21 issue of Nature. This pathway is the communications highway that passes information and instructions from one molecule to another to cause biochemical changes.

The fungus spreads when its spores are blown to rice plants and stick on the leaves. Once on the plant, the spore forms a structure called an appressorium. This bubble-like structure grows until it has so much pressure inside that it blasts through the plant’s surface.

"The penetration structure has enormous force, called turgor pressure, that is 40 times the pressure found in a bicycle tire," Xu said. "It’s like driving nails through the plant surface."

The researchers found that a pathway, which includes three genes that form a cascade of communication events, drives the infection process. Xu and his team reported that when they blocked the genes, the fungus couldn’t develop appressoria and infect the plant.

The pathway holds enormous potential of being used to produce new fungicides or new resistant rice plants to hold this pathogen at bay. However, rice blast fungus is able to quickly evolve new tricks to tackle rice plants, apparently because the fungus and the grain developed side by side over centuries, according to genetic experts. To overcome the fungus’ wiles, researchers need to know more than just the one pathway.

"We want to know how the plant and the fungus talk," Xu said. "We need to know the signal, or ligand, the rice plant gives to the receptor on the fungus that allows the penetration process to proceed. We need to understand the whole communication among all the genes in the rice blast penetration pathway before we can design a rice plant that resists this fungus."

Researchers already have some additional pieces of the puzzle gleaned from sequencing the rice blast genome. They learned that the pathogen has a unique family of proteins that acts as feelers to tell the fungus when it has a good host plant and how the plant might fight a fungal invasion. These feelers are called G-protein-coupled receptors (GPCR). In humans, GPCRs are found on the tongue and in the nose and are part of what makes foods taste different.

The scientists discovered that rice blast fungus has more than 40 GPCRs that probably are regulating the signals at the beginning of the penetration pathway.

"We are working on the basic infection process," Xu said. "We want to know what genetic mechanisms regulate this process, how the fungus spores recognize the plant surface, and how they know to penetrate it."

Once the fungus enters the rice leaf cells, the infected cells attempt to defend the plant by dying. This means death for young plants, while in older plants, rice grain is lost.

The biggest rice blast problem is in Asia and Latin America where rice is an important food staple. About two-thirds of the people in the world rely on the grain, according to the United States Department of Agriculture (USDA) Agricultural Research Service. Rice supplies 23 percent of the total calories that the world’s population consumes, according to the International Rice Research Institute.

In addition to the countries that rely on rice for food, the pathogen also is found in the United States, especially in Arkansas, Louisiana and California, where rice blast recently evolved in order to foil a rice blast resistance gene, according to the USDA. Resistance in rice plants varies in different regions due to climate variation and in strains of the pathogen.

Xu said that an important area of his future research will be to learn the interaction among several signaling pathways in rice blast fungus that allows the pathogen to communicate with the plant.

Grants from the USDA Agriculture National Research Initiative and the National Science Foundation supported this study, which was published in the May issue of Plant Cell.

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>