Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A ’dimmer switch’ for genes

01.07.2005


A protein that was thought to simply turn genes on and off now looks to be more like a cellular "dimmer switch," researchers from Huntsman Cancer Institute at the University of Utah, report in the July 1, 2005, issue of the journal Science.



The scientists showed for the first time that when certain parts of a protein molecule are modified – flexible, randomly structured regions believed to be only minor players in the protein world – they become important in turning genes on and off, but in a way that resembles a dimmer switch rather than an on-off switch.

Genes carry the code that produces proteins to carry out almost all functions in a living organism. But some of these proteins also help control when and where genes do their jobs. The new study deals with how one such protein, named Ets-1, turns genes on or off.


Huntsman Cancer Institute scientists, led by Barbara Graves, Ph.D., professor and chair of the Department of Oncological Sciences at the University of Utah School of Medicine, and doctoral student Miles Pufall, studied Ets-1, a protein known as a transcription factor that helps read genetic information. This factor serves as a cell’s librarian, helping find the right genetic instructions.

How much information the librarian provides, and how accurate that information is, must be tightly controlled. Without the right information, cells can’t behave properly, and may, as in the case of cancer, grow out of control. The connection between factors such as Ets-1 and a number of cancers prompted the study of how it works.

One way proteins are controlled occurs after a cell creates a protein. Graves illustrates this process by comparing protein structure with beads on a string. "After the protein is made, it can acquire what we call post-translational modifications, which are like decorations on a beaded necklace. In this analogy, one person creates a necklace using similar beads and then a committee comes along and decorates it, putting a gold star here and a diamond there. These modifications give the protein different properties."

The "decorations" that were studied were phosphate molecules, which previously had been shown to build up on proteins until a certain number accumulated. The result, according to the study, has been described in the past as a sharp on-off switch of protein activity.

"What we found was that each time we added a phosphate to a particular unstructured region of Ets-1, there was an effect on the protein’s ability to bind to a gene. Binding was weakened, but it was a gradual weakening. That isn’t typical," Graves says. "Instead of acting like an on-off switch, it behaved the way a dimmer switch does to regulate lighting in a gradual manner."

In studying how this fine-tuning worked, they also discovered that conventional wisdom failed to fully describe how proteins function. It was known that proteins have regions with parts that are fixed in space, with a definite structure, and parts that are randomly positioned in space, like spaghetti strands. It was thought that the structured regions did most of the work, while the unstructured regions served only minor roles, such as tethering parts together.

"Scientists understand how a molecule works in part because we understand the shape or structure," Graves explains. "But what we discovered takes us beyond knowing the structure. Our data were about features that are not fixed in space, but that are flexible and changing."

The team used a nuclear magnetic resonance, or NMR, which allows scientists to observe how the atoms of a molecule behave inside a magnetic field. The Graves team found that unstructured regions of the Ets-1 protein were affecting the structured regions in the work of controlling genes. "In fact," Graves reports, "the region’s unstructured nature appears to be an essential requirement." NMR showed that phosphate addition to this unstructured region caused a gradual decline in DNA binding, gradually turning a gene off.

"One thing we didn’t get was why Ets-1 worked differently before and after phosphorylation [the addition of phosphate]," says Pufall, "because as far as we could tell, the overall shape of the molecule didn’t change."

"A protein molecule is not like a rock. It’s more like Jell-O: it has structure, it has shape, but it jiggles," explains Graves. "We didn’t discover jiggling, but we were able to determine that the amount of internal motion within a protein corresponds to the ability of a protein to do its work." Phosphorylation was found to decrease the internal motion of Ets-1, reducing its activity.

According to Pufall, "Ets-1 provides a remarkable illustration of how elegantly proteins are put together – forming a distinct shape, but with the versatility to respond to the changing needs of the cell, however subtle."

The findings have long-term implications for the study of all proteins, because, according to Graves, any protein has the potential to be organized this way, with structured and unstructured regions that work together.

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>